
A short list of the most useful R commands

Taken from: http://www.personality-project.org/R/r.commands.html

A summary of the most important commands with minimal examples. For all of these commands, using the help(function) or ? function is the most useful source of information.

Unfortunately, knowing what to ask for help about is the hardest problem.

Input and display

 #read files with labels in first row

read.table(filename,header=TRUE) #read a tab or space delimited file

read.table(filename,header=TRUE,sep=',') #read csv files

x=c(1,2,4,8,16) #create a data vector with specified elements

y=c(1:10) #creat a data vector with elements 1-10

n=10

x1=c(rnorm(n)) #create a n item vector of random normal deviates

y1=c(runif(n))+n #create another n item vector that has n added to each random uniform

distribution

z=rbinom(n,size,prob) #create n samples of size "size" with probability prob from the binomial

vect=c(x,y) #combine them into one vector of length 2n

mat=cbind(x,y) #combine them into a n x 2 matrix

mat[4,2] #display the 4th row and the 2nd column

mat[3,] #display the 3rd row

mat[,2] #display the 2nd column

subset(dataset,logical) #those objects meeting a logical criterion

subset(data.df,select=variables,logical) #get those objects from a data frame that meet a criterion

data.df[data.df=logical] #yet another way to get a subset

x[order(x$B),] #sort a dataframe by the order of the elements in B

x[rev(order(x$B)),] #sort the dataframe in reverse order

browse.workspace #a menu command that creates a window with information about all variables in the workspace

moving around

ls() #list the variables in the workspace

rm(x) #remove x from the workspace

rm(list=ls()) #remove all the variables from the workspace

http://www.personality-project.org/R/r.commands.html

attach(mat) #make the names of the variables in the matrix or data frame available in the

workspace

detach(mat) #releases the names

new=old[,-n] #drop the nth column

new=old[n,] #drop the nth row

new=subset(old,logical) #select those cases that meet the logical condition

complete = subset(data.df,complete.cases(data.df)) #find those cases with no missing values

new=old[n1:n2,n3:n4] #select the n1 through n2 rows of variables n3 through n4)

distributions

beta(a, b) gamma(x) choose(n, k) factorial(x) dnorm(x, mean=0, sd=1, log = FALSE) #normal distribution pnorm(q, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE) qnorm(p,

mean=0, sd=1, lower.tail = TRUE, log.p = FALSE) rnorm(n, mean=0, sd=1) dunif(x, min=0, max=1, log = FALSE) #uniform distribution punif(q, min=0, max=1, lower.tail =

TRUE, log.p = FALSE) qunif(p, min=0, max=1, lower.tail = TRUE, log.p = FALSE) runif(n, min=0, max=1)

data manipulation

replace(x, list, values) #remember to assign this to some object i.e., x <- replace(x,x==-9,NA)

 #similar to the operation x[x==-9] <- NA

cut(x, breaks, labels = NULL,

 include.lowest = FALSE, right = TRUE, dig.lab = 3, ...)

x.df=data.frame(x1,x2,x3 ...) #combine different kinds of data into a data frame

 as.data.frame()

 is.data.frame()

x=as.matrix()

scale() #converts a data frame to standardized scores

round(x,n) #rounds the values of x to n decimal places

ceiling(x) #vector x of smallest integers > x

floor(x) #vector x of largest interger < x

as.integer(x) #truncates real x to integers (compare to round(x,0)

as.integer(x < cutpoint) #vector x of 0 if less than cutpoint, 1 if greater than cutpoint)

factor(ifelse(a < cutpoint, "Neg", "Pos")) #is another way to dichotomize and to make a factor for analysis

transform(data.df,variable names = some operation) #can be part of a set up for a data set

x%in%y #tests each element of x for membership in y

y%in%x #tests each element of y for membership in x

all(x%in%y) #true if x is a proper subset of y

all(x) # for a vector of logical values, are they all true?

any(x) #for a vector of logical values, is at least one true?

Statistics and transformations

max()

min()

mean()

median()

sum()

var() #produces the variance covariance matrix

sd() #standard deviation

mad() #(median absolute deviation)

fivenum() #Tukey fivenumbers min, lowerhinge, median, upper hinge, max

table() #frequency counts of entries, ideally the entries are factors(although it works with integers or even reals)

scale(data,scale=T) #centers around the mean and scales by the sd)

cumsum(x) #cumulative sum, etc.

cumprod(x)

cummax(x)

cummin(x)

rev(x) #reverse the order of values in x

cor(x,y,use="pair") #correlation matrix for pairwise complete data, use="complete" for complete cases

aov(x~y,data=datafile) #where x and y can be matrices

aov.ex1 = aov(DV~IV,data=data.ex1) #do the analysis of variance or

aov.ex2 = aov(DV~IV1*IV21,data=data.ex2) #do a two way analysis of variance

summary(aov.ex1) #show the summary table

print(model.tables(aov.ex1,"means"),digits=3) #report the means and the number of subjects/cell

boxplot(DV~IV,data=data.ex1) #graphical summary appears in graphics window

lm(x~y,data=dataset) #basic linear model where x and y can be matrices (see plot.lm for plotting options)

t.test(x,g)

pairwise.t.test(x,g)

power.anova.test(groups = NULL, n = NULL, between.var = NULL,

within.var = NULL, sig.level = 0.05, power = NULL)

power.t.test(n = NULL, delta = NULL, sd = 1, sig.level = 0.05,

 power = NULL, type = c("two.sample", "one.sample", "paired"),

 alternative = c("two.sided", "one.sided"),strict = FALSE)

More statistics: Regression and Linear model

lm(Y~X) #Y and X can be matrices

lm(Y~X1+X2)

lm(Y~X|W)

solve(A,B) #inverse of A * B - used for linear regression

solve(A) #inverse of A

factanal()

princomp()

Useful additional commands

colSums (x, na.rm = FALSE, dims = 1)

rowSums (x, na.rm = FALSE, dims = 1)

colMeans(x, na.rm = FALSE, dims = 1)

rowMeans(x, na.rm = FALSE, dims = 1)

rowsum(x, group, reorder = TRUE, ...) #finds row sums for each level of a grouping variable

apply(X, MARGIN, FUN, ...) #applies the function (FUN) to either rows (1) or columns (2) on object X

apply(x,1,min) #finds the minimum for each row

apply(x,2,max) #finds the maximum for each column

col.max(x) #another way to find which column has the maximum value for each row

which.min(x)

which.max(x)

z=apply(big5r,1,which.min) #tells the row with the minimum value for every column

Graphics

par(mfrow=c(nrow,mcol)) #number of rows and columns to graph

par(ask=TRUE) #ask for user input before drawing a new graph

par(omi=c(0,0,1,0)) #set the size of the outer margins

mtext("some global title",3,outer=TRUE,line=1,cex=1.5) #note that we seem to need to add the global title last

 #cex = character expansion factor

boxplot(x,main="title") #boxplot (box and whiskers)

title("some title") #add a title to the first graph

hist() #histogram

plot()

 plot(x,y,xlim=range(-1,1),ylim=range(-1,1),main=title)

 par(mfrow=c(1,1)) #change the graph window back to one figure

 symb=c(19,25,3,23)

 colors=c("black","red","green","blue")

 charact=c("S","T","N","H")

 plot(PA,NAF,pch=symb[group],col=colors[group],bg=colors[condit],cex=1.5,main="Postive vs. Negative Affect

 Film condition")

 points(mPA,mNA,pch=symb[condit],cex=4.5,col=colors[condit],bg=colors[condit])

curve()

abline(a,b)

 abline(a, b, untf = FALSE, ...)

 abline(h=, untf = FALSE, ...)

 abline(v=, untf = FALSE, ...)

 abline(coef=, untf = FALSE, ...)

 abline(reg=, untf = FALSE, ...)

identify()

 plot(eatar,eanta,xlim=range(-1,1),ylim=range(-1,1),main=title)

 identify(eatar,eanta,labels=labels(energysR[,1])) #dynamically puts names on the plots

locate()

legend()

pairs() #SPLOM (scatter plot Matrix)

pairs.panels () #SPLOM on lower off diagonal, histograms on diagonal, correlations on diagonal

 #not standard R, but uses a function found in useful.r

matplot ()

biplot ())

plot(table(x)) #plot the frequencies of levels in x

x= recordPlot() #save the current plot device output in the object x

replayPlot(x) #replot object x

dev.control #various control functions for printing/saving graphic files

pdf(height=6, width=6) #create a pdf file for output

dev.of() #close the pdf file created with pdf

layout(mat) #specify where multiple graphs go on the page

 #experiment with the magic code from Paul Murrell to do fancy graphic location

layout(rbind(c(1, 1, 2, 2, 3, 3),

 c(0, 4, 4, 5, 5, 0)))

for (i in 1:5) {

 plot(i, type="n")

 text(1, i, paste("Plot", i), cex=4)

}

Distributions

To generate random samples from a variety of distributions
runif(n,lower,upper)

rnorm(n,mean,sd)

rbinom(n,size,p)

sample(x, size, replace = FALSE, prob = NULL) #samples with or without replacement

Working with Dates

 date <-strptime(as.character(date), "%m/%d/%y") #change the date field to a internal form for time

 #see ?formats and ?POSIXlt

 as.Date

 month= months(date) #see also weekdays

Additional functions that I have created because I needed some specific operation may be included in the workspace by issuing the source command:

source(http://personality-project.org/r/useful.r)

These functions include:

#alpha.scale #find coefficient alpha for a scale and a dataframe of items

#describe give means, sd, skew, n, and se

#summ.stats #basic summary statistics by a grouping variable

#error.crosses (error bars in two space)

#skew find skew

#panel.cor taken from the examples for pairs

#pairs.panels adapted from panel.cor -- gives a splom, histogram, and correlation matrix

#multi.hist #plot multiple histograms

#correct.cor #given a correlation matrix and a vector of reliabilities, correct for reliability

#fisherz #convert pearson r to fisher z

#paired.r #test for difference of dependent correlations

#count.pairwise #count the number of good cases when doing pairwise analysis

#eigen.loadings #convert eigen vector vectors to factor loadings by unnormalizing them

#principal #yet another way to do a principal components analysis -- brute force eignvalue decomp

#factor.congruence #find the factor congruence coeffiecints

#factor.model #given a factor model, find the correlation matrix

#factor.residuals #how well does it fit?

#factor.rotate # rotate two columns of a factor matrix by theta (in degrees)

#phi2poly #convert a matrix of phi coefficients to polychoric correlations

http://www.personality-project.org/R/r.useful.html

