Where to get the exercises

http://crio.uchicago.edu/?page id=1207

If you have Windows laptop, install xMing:
http://sourceforge.net/projects/xming/

Follow instructions on how to install and connect via x-tunneling:

https://ibi.uchicago.edu/education/downloads/
Installing and using Xming.pdf

For Macs laptop:
https://ibi.uchicago.edu/education/downloads/tunneling for mac.pdf

University of Chicago
Center for Research Informatics

Introduction to R and Submitting
to HPC

Alex Rodriguez
Jorge Andrade

Outline for the Day

CRI resources and support

Accessing R on CRI systems

Introduction to R

— Objects

— Basic operations

— Statistics

— Graphs

Exercise 1 — creating a graph from biological data
Exercise 2 — Submitting R script to Cluster

University of Chicago
Center for Research Informatics

CRI Support and Resources

Resources Summary

Main Cluster (ibicluster)
— 94 Nodes, 8 cores => 752 processors
— 16GB RAM/per Node => 4GB per job

— Each user can submit as many jobs as they want, but have at most 92 jobs
running at one time

— No reservations
— Access to all Linux applications
Large Memory Computation Linux (brdfbigl, I-cri-bomem)
— brdfbigl = 256 GB RAM shared
— |-cri-bomem =» 1 TB RAM shared
— No reservations
— Access to all Linux applications
Large Memory Computation Windows (brdfbigw)
— 64 bit, 256 GB RAM
— Access to many Windows applications
Cloud applications (Galaxy)

Project Shares

|

ssh

v

Virtual machines

[——
————]
—_—

ssh

v

PuTTY (Windows)>
or Terminal (Mac)

brdfbigl.uchicago.edu

ssh

N
,

npa o3eaiyon-ajedsp.q

ibicluster.uchicago.edu

Remote desktop . i .
. 9 o

> ‘ brdfbigw.uchicago.edu

ﬁ"..i CRI Big Mem Cluster
Nl

CRI cluster

CRI Support

* CRI Website:
— http://cri.uchicago.edu

e Support Email Address
— cri-support@ci.uchicago.edu

Disclaimer

* Ristypically used for statistics; there are
several topics related to R that we are NOT
going to cover:

— Statistics in general/statistical analysis of data
— Bayesian analysis
— Linux commands

University of Chicago
Center for Research Informatics

Introduction to R

Ultra-short R introduction

Most life scientists use spreadsheet programs
(like excel for data analysis) Why?

Ease to use
- Click buttons, select data by hand
- You see the data in front of you

- You can do limited programming

Disadvantages of spreadsheet

 Hard to handle large dataset (>1000 data
points)

* Inflexible, few analyses available

* Hard to repeat analyses systematically with
new data

R is a computational environment - somewhere between a
program and a programming language

No buttons, no wizards: only a command line interface

Is a professional statistics toolset — likely the only analyses
tool you will ever need

Is also a programming language

Can handle large datasets

Very powerful graphics

State-of-the-art statistics program for bioinformatics
Free, and open source!

R popularity
R is a statistical tool

Simple to use
command line
environment

New packages
added every month

Used in many fields
BioConductor

Excel cannot handle
1000’s of lines, R is
almost instant

Mean Monthly Traffic on Main E-mail Discussion Lists

R Websites

* CRAN: http://cran.r-project.org/
— Manuals: http://cran.r-project.org/manuals.html
— FAQs: http://cran.r-project.org/fags.html

— Contributed Guides:
http://cran.r-project.org/other-docs.html

* R Home: http://www.r-project.org/
— R Wiki: http://wiki.r-project.org/
— R Journal: http://journal.r-project.org/
— Mailing Lists: http://www.r-project.org/mail.html
— Bioconductor: http://www.bioconductor.org/

Where to find R

* Ris on all of our Linux machines including the
clusters

* R can be installed locally on your personal
computer from the CRAN website

* In windows, R will exist in the start menu.
Load it by clicking the icon.

Using R — Linux Shell

If you don't need to see graphs, simply
connect to brdfgate.uchicago.edu

Login
ssh to brdfbigl ($ ssh brdfbigl)
Type 'R' in the command prompt (S R)

Using R — Linux Shell wi

File Trans...

* To see graphs while using
the CRI Linux server, we
must use Xming

* We can see X runningin
the tray

A

Adobe Reader

Windows Server 2003 Standard Edition

N () Accessories
IT) Applications
Documents * |7) Internet

Settings
Search

Help and Support

Log OFff waltsa...

Shut Down...

raphics

£ Ghostscript 8.62

B Gsview 4.9

B Pageant

EP PUTTY 0.60

‘& Remote Desktop Connection
(™1 Secure File Transfer Client
Secure Shell Client

Location: X:\Progran
()(XWin Server

_é,‘ Aladdin Expander 5.1
@v On-Demand Scan 8.7
» B2 PuTTYgen 0.60
» g virusscan 8.7 Console
» [U VirusScan 8.7 On-Access Scan
» U, VirusScan 8.7 On-Demand Scan

icrosoft Silverlight »

@ E®O o @ student Government - M... I |88 Adobe Photoshop CS4E...

@:ﬂ W) (&) 10:55 am

Using R — Linux Shell with Graphics

e Connect with be sure to enable X11

forwarding

PUTTy,

Adobe Reader

PuTTY Configuration

£ Ghostscript 8.62

& PuTTY Configuration

B Gaview4.9 Category:
T Pageant Pﬁg,ow L S BT g"i'-’ o 18 g ; A
(= Session Basic options for your PuTTY session = Tern:(lnallj d - Options contiolling SSH X1 forwarding
A eyboar -
‘& Remote Deskkop Connection i L_uggmg Specify the destination you want to connect to Bell | X11 forwarding
(71 Secure File Transfer Client Te'rzna:) 4 Eeatuies | nable %11 forwarding
¥ eyboar 4 x]
&) Secure Shell Client Beﬁ = Window display location |
% W"_ﬁcp Features SRS Appea!ance Remote %11 authentication protocol
X ¥ming = Window ORaw O Tehet ORlogin ®SSH O Serial Behaviour (® MIT-Magic-Cookie1 (O XDM-Authorization-1
X xterm Appearance) Translation
X xiwin Server Bahaviour Load, save or delete a stored session Selection
5% Aladdin Expander 5.1 Translation Saved Sessions Colours
% on-Demand Scan 8.7 Selachon \ | (= Connection
é [T Accessories » 2 PuTTYgen 0.60 Colours [Default Settings || Load D
2 i) Applications » [virusscan 8.7 Console (= Connection | brdfgate Prozy
; ») Internet » [@ virusScan 8.7 On-Access Scan Data | brdfgateX Telnet
] L vi .7 On- Proxy | mysgl Rlogin
2 » @, VirusScan 8.7 On-Demand Scan al
5 Teket = S5H
Rlogin | Kex
g 5 SSH = Auth
5 Seriel Close window on exit:
O Always O MNever (& Only on clean exit |
J Log OFf waltsa... Tunnels |
Bugs ¥
@ Shut Down... 7 :] [e g =
(o (=)
BE@PPH @ (@) student Government - M... | |88 Adobe Photoshop CS4E... About Open Cancel

sing R — Linux Shell with Graphics

Login with the workshop account or your personal account
ssh to brdfgate with -Y flag:
S ssh -Y brdfgate

Ssh to brdfbigl with —X flag:
$ ssh -X brdfbigl

awalts@brdfbi H=] E3

and ibibmem
ted.

Basics

20

R Command Line

R's main prompt is:

>

This means R is ready for a command
R's secondary prompt is:

+

This means R is waiting for you to complete the
current command

Ctrl-c or Esc will stop processing.
Quit R with: > g ()

Commands

* Elementary commands are either expressions
or assignments.

— Expressions will be evaluated, printed, and the
value is lost

— Assignments also evaluated an expression, but it
passes the value to a variable for use later. The
result is not automatically printed.

e Commands are separated by a semi-colon(;) or

a hewline

Entering Commands

R Iis case-sensitive

Name your variables with letters, numbers,
the dot (.), and the underscore ()

Begin variable names with a letter
Tab-completion works

Use up and down arrows to see commands
vou have used during the current session

e Start R

* Type: demo(graphics)

e Hit ent

er a few times

First challenge

IR RGui (64-bit)

File Edit View Misc Packages Windows Help

R R Console

R version 2.15.0 (2012-03-30)

Copyright (C) 2012 The R Foundation for Statistical Computing
ISBN 3-900051-07-0

Platform: x86_64-pc-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale
R is a collaborative project with many contributors.

Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> demo (graphics) |

Getting help in R

* R has several built-in ways to get help
> help("data.frame")
> ? data.frame
> browseVignettes ("Biobase")
* R mailing list
— http://www.r-project.org/mail.html, R-help section

— Read the posting guide before sending anything

— Be sure to include the information from the
sessionInfo () command:
> gsessionInfo ()

Objects

e All entities created in R are known as objects. Some
examples are:

— Variables
— Arrays of numbers
— Character strings
— Functions
* The collection of objects currently stored is the

workspace. To see the objects in the workspace use
either:

> objects ()
or
> 1s ()

Libraries (Packages)

R has a number of libraries (packages) available
for use

Most are user-contributed and have been tested
to varying degrees

To see packages available to load:
> library ()

To load a package so you can use its functions:
> library (packageName)

To see the packages currently loaded:
> search ()

Getting New Packages

The CRAN website maintains a list of packages
for download: Package list

There are a lot of libraries that don't come
with the basic R install package

The Best Practice is to notify us of a package
you want

We'll install it so everyone can use it

Data Structures

29

Basic Structures

* vector An indexed array containing elements that
are all the same type

e factor A vector of categorical descriptors

e data.frame A matrix-like structure in which the

columns can be of different types (most
likely numeric and categorical)

Vectors

The simplest structure in R is a numeric vector

It is a single entity consisting of an ordered collection of numbers.
One-based indexing

A vector is an collection of numbers and/or strings:

* (“jorge”, “alex”, “ron”
e (10,5.2,1, 7, 2,21)
* (3)
There are a number of functions we can use to create vectors:
— c () :concatenate
— : (the colon) :integer sequence
— seqg () :general sequence
— rep () :repetitive patterns
— vector () :vector of the given length with default value

In R, we make a vector by the c() command (for concatenate)

Method name Method arguments

—

>c(1,5,10,7,2,1)
[1]1 15107 2 1 <——— Method output is also called “return value(s)”

> c('jorge’, 'alex’, 'ron’)
[1] lljorgell IIaIeXH llronll

When we input strings or characters, we have to surround them with “ or
If making vectors of size 1, we can skip c()

>3
[1] 3
> Is() # List the contents of the workspace.
> rm(list=Is()) # This completely clears the workspace.
> [s()

character(0) # This means "nothing to see here"

Challenge:

1) Make the following vector
45,5,12,10

2) What happens with the following command?
c(1:100)
c(50:2)

A vector is a data structure, and the most fundamental in R.
Almost everything in R is some kind of vector, although
sometimes in several dimensions — vectors within vectors

Examples: Other methods for creating vectors

* The colon :
> 1:3

> 2*3:15

> 30:1
* seq()

> seq(l,3)

> seq(3,1)

> seq (-5, 5, by=.2)
* rep()

> rep(l:2, 3)

,

* You will get over-whelmed by different
command names fast

Reference sheet is your friend!

* Use the reference sheet to remind yourself
in all exercises

Assignment to memory

* The c() command is almost useless in itself - we want to keep the vector for
other analyses

* The assignment concept:

> 4+5 #add 4 and 5

[1]9

> a<-4 # store 4 as “a@”

> b<-5 # store 5 as “b” _

>a # just checking Anything after a #

[1]4 will be disregarded
>b by R. Used for

[1] 5 making comments
> a+b # add a+b (4+5)

[1]9

Expanding this to a whole vector
my_vector<- c¢(1,5,10, 7, 2)

Note that there is no “return value” now - this is caught by the “my_vector”.
What happens if you type my_vector after this?

my_vector is a variable, with the variable name: my_vector. Variable names
are totally arbitrary!

The anatomy of the vector:

Name | my_vector

Values |1 5 10 |7 2

Index | [1] 2] [3] | [4] [5]

> my_vector[c(1,3,9)]
[1] 110 2

> my_vector[1:4]

[11 1 510 7

Making a series of integers:
A:B will give a vector of A/ A+1, A+2...B

>my_vector[4:1] # also works backwards
[1] 710 5 1

We can access part of the vector like this:
my_vector[5] # will give the 5th item in the vector
What happens if you do this?

my_vector<- ¢(1,5,10, 7, 2) # define the vector
my_vector [c(1,3,5)]

my_vector[1:4]

my_vector[4:1]

Subsetting vectors — Positive Indices

e Access subsets of vectors via [subscript]
> x<-11:20
> x[2:4]
Returns values 2 through 4 in vector x

e Subset expressions can appear on the left side
of an assignment:

> x[8:10] <-44
44 is assigned to values 8 through 10 in vector x

Subsetting vectors — Negative Indices

e Can use negation to select all indices except a given subset

> x[=(1:3)]
Returns all elements in vector x EXCEPT 1 through 3

* Negative subscripts can appear on the left side of an
assignment

> x[-(8:10)] = 33
Assign 33 to all values in vector x EXCEPT 8 through 10

e Cannot mix positive and negative subscripts

Subsetting vectors — Logical Predicates

e (Can use logical vectors to obtain subsets
> x <- 11:20

> x > 15
Returns a logical vector. Each element is either true or false accordingly

> x[x > 15]
Returns a vector of all the values of x that are greater than 5

 The subset vector can be longer than the base vector; values
selected beyond the end of the vector produce NAs.

Examples — Subsetting Vectors

e Subsetting

>

X

> X

vV V V V V

X
X
X

X
1

<-11:20

(2:4]

(8:10] <-44

- (5:8)] = 33
<-11:20

[x > 16]

ogic <= x > 17

Challenge

* figure out at least three ways of making R
print your vector in the other direction

my_vector<- ¢(1,5,10, 7, 2) # define the vector

Challenge Solution

my vector[5:1]

c <- c(my vector[5],my vector[4],my vector
[3],my vector[2], my vector[l])

my vector[c(5,4,3,2,1)]

rev(my vector)

Factors

* A vector object used to specify a discrete classification, or
grouping, of the components of other vectors of the
same length

* One-based indexing
> col <= c("green", "blue", "hazel",
"hazel", "brown", "hazel", "blue",
"brown")

> factor (col)
> col.factor<- factor(col)

e Subsetting, including assignment, also works on factors

data.frame

Data frames are a special R structure used to hold a set
of spreadsheet like table. In a data. frame, the
observations are the rows and the covariates are the
columns.

Can contain objects of different types
One-based indexing

Data frames can be treated like matrices and be
indexed with two subscripts. The first subscript refers
to the observation (row), the second to the variable
(column).

Data frames are really lists, and list subsetting can also
be used on them.

Reading Data from a File

There are several read methods
read.table, read.csv, read.delim
All have different defaults and arguments you can set

All read a file in table format and create a data.frame

from it. Cases are the rows in the file; variables are
the columns in the file.

Using external files

e Commands stored in a file in the working
directory can be executed via:

> source ("commands.R")
e Qutput can be diverted to a file via:

> sink ("recordOutput.txt")

— All subsequent output will be diverted to
"recordOutput.txt”

* To restore output to the console use:
> sink ()

S

R Scripts on the Command Line or Cluster

Write an R script
— R commands typed on the R shell

This runs R from the command line in batch
mode or can be run on cluster environment

— make sure packages are installed on cluster

— the log file is output to track R's progress

R CMD BATCH --vanilla path/to/file.R file.log &
OR

Rscript path/to/file.R &

Exercise 1

Diabetes in Female Pima Indians

51

Exercise Overview

The data are from the R package ‘faraway’.
Do an initial data analysis

Clean the data

Make some graphs

#Clear existing data and graphics

rm(list=1s())

graphics.off ()

#Load Hmisc library

library(Hmisc)

#Read Data
data=read.csv('/biodbA/WorkshopDir/R BioConductor/DATA WHBIOCONDUCTOR DEMO.CSV')
#Setting Labels

label(data$study id)="Subject ID"

label (data$Spregnant)="Number of pregnancies:"
label(data$glucose)="Plasma glucose concentration at 2 hours in an oral glucose tolerance test"
label(data$diastolic)="Diastolic blood pressure"
label (dataS$triceps)="Triceps skin fold thickness"
label(data$insulin)="2 hour serum insulin"

label (data$bmi)="Body mass index"

label(data$age pima)="Age"

label (data$test)="Test for signs of diabetes"
label(data$pima complete)="Complete?"

#Setting Units

#Setting Factors(will create new variable for factors)
data$test.factor = factor(dataS$test,levels=c("1","0"))
data$pima complete.factor = factor(datas$pima complete,levels=c("0","1","2"))

levels(dataStest.factor)=c("Positive", "Negative")

levels(data$pima complete.factor)=c("Incomplete","Unverified","Complete")

Using the Data

The data must be in R's current working directory OR
you must provide the absolute path to the data.

Find out what the current working directory is and
change it with the following commands:

> getwd ()
> setwd ("dir")

Use the source file via:

>source ("/biodbA/WorkshopDir/R Bioconductor/
EXPORT BIOCONDUCTOR DEMO.R")

The data are now loaded

Initial Data Analysis

By default, the data will be loaded into a data.frame
object called 'data’

We can see the object's class viathe class ()
command:

> class (data)

I'm going to rename the data
> pilma<-data

Look at the data:

> plma

> head (pima)

> summary (pima)

summary()

* Looking at pregnant, we see a max value of
17. This is large, but not impossible.

 We see that the minimum values for
glucose,diastollc, triceps,
insulin,and bmi areall 0. Thisis
definitely a problem!

e Look at the sorted values:

> sort (pima$diastolic)

vV V V V V

Clean the Data

We will set all the zero values of the five
mentioned variables to NA, the missing value
code used by R:

pimaS$diastolic[pima$Sdiastolic==0] <-NA
pimasSglucose[pima$glucose==0] <-NA
pimaStriceps([pimaS$triceps==0] <-NA
pimaSinsulin[pima$insulin==0] <-NA
pimaSbmi [pimaSbmi==0] <-NA

Now if we use the summary () command again,

things look better

Factor Variables

 This dataset has one factor variable, test

* The R script has done some work for us and
has converted the test variable into a factor
named test.factor

* The R script has coded the variable values for
0 being negative and 1 being positive

Creating Factor Variables

If you have a dataset in which this conversion
was not done for you, the following commands

will create a factor variable
dataSetSfactorVar <- factor (dataSetSfactorVar)

summary (dataSet$SfactorVar)

levels (dataSetSfactorVar

)

<- c("namel",

"name2",

)

Graph the Data

* Now the data is clean, we're ready to make some
graphs:
* Histogram

> hist (pima$diastolic)

e 0o X\ RGr: Device 2 (ACTIVE)

{ Histogram of pima$diastolic

i

1 S

o
'z}
{
|
>
o
2
[
3
T
2 o
w2
‘ \/_li
| o |
"2}
+
H
o
[T T T T 1
20 40 60 100 120

Graph the Data

* Kernel Density Plot

> plot (density(pima$diastolic,
na.rm=TRUE))

density.default(x = pima$diastolic, na.rm = TRUE)

ensity

D
0.000 0.005 0.010 0.015 0.020 0.025 0.030

N =733 Bandwidth =2.872

Graph the Data

* Index plot

> plot (sort (pima$diastolic),pch=".")

IIIII

Graph the Data

* Bivariate plots

— Scatterplot

)

pima

> plot(diastolic ~ bmi,

oo}

I

30

ocl

oot

oljoiselp

60

50

40

20

bmi

Graph the Data

e Bivariate plots
— Boxplot
> plot (pimasbmi ~ pima$test.factor)

Graph the Data

e Scatter plot matrix

> palrs (pima)

2
-] 5 X &) =1
g] g

(o O ey D no

d
L. ©
AT D (DR N SR S
o
q 9

FEFYSMrE.

1

ge_pimd

g
g
@
] q O -
(]
TTT
00 0.8 20 60 20 80 50 200 0 600

T

.....

00000

IIIII

Graph the Data

* Heatmap

> pimaMat <-

.
|

as.matrix(pimal[2:9])

H

AT II}I AL \JJ

> heatmap (pimaMat)

|

pim
riceps
bm

g
diastolic
gl

Run Exercise 1 in Command Line

e We can also create a file with all our R commands and run it from a Linux
Bash Shell

source (" /biodbA/WorkshopDir/R_BioConductor/EXPORT BIOCONDUCTOR_DEMO.R")
pima<-data
pima$diastolic[pima$diastolic==0] <-NA
pima$glucose[pima$glucose==0] <-NA
pima$triceps[pima$triceps==0] <-NA
pima$insulin[pima$insulin==0] <-NA
pima$bmi[pima$bmi==0] <-NA

par (mfrow=c(3,2))

hist(pima$diastolic)
plot(density(pima$diastolic, na.rm=TRUE))
plot(sort(pima$diastolic),pch=".")
plot(diastolic ~ bmi, pima)

plot(pima$bmi ~ pimaS$test.factor)
pairs(pima)

pimaMat <- as.matrix(pima[2:9])

heatmap (pimaMat)

— R CMD BATCH /biodbA/WorkshopDir/R BioConductor/pima plots for cluster.R

 The output will be written to a file called “Rplots.pdf” stored in the
directory where you ran the command

Run R Script in Cluster

We can also run R scripts on a Cluster
environment

We need to create a bash submit script so that
the “head node” can schedule the job on a
“cluster node”

The output will be written to a user specified
directory

Log on to cluster
S ssh ibicluster

Writing a Submit Shell Script

 What is a submit shell script (wrapper script)?

* Create a shell script as the input

— All commands which would normally be run from the command line
will go inside the wrapper script

— All parameters (metadata and options) about the job to be run on the
cluster will also be included in the submit script

Job name

Setting working directory

Standard output and error file name and location
Type of shell to run

Job dependencies

 Submit the shell script to the SGE cluster

gsub

[options] shell submit script

— Will queue the job as soon as nodes are available
— What is the scheduling priority?

70

Anatomy of Wrapper Script

#! /bin/bash first line defines the shell

The next section contains SGE flags for your job
submission. They start with "#S$ "

#S —-cwd
#S -N nameit
#S -S /bin/bash

Execute your profile to set the env. variables
~/.profile

List of commands you wish the cluster node to run

R CMD BATCH /biodbA/WorkshopDir/R BioConductor/
pima plots for cluster.R

Submitting a job to the queue: gsub

gsub [options] scriptfile

gsub :submit a batch job to Sun Grid queuing system.
Options:
—cwd : -- Place the output file (.e, .0) in the current working directory. The default
is to place them in the users home directory
-S [shell path] :Specify the shell to use when running the job script
-N [name] :The name of the job
—e [stderr] :The name of the file where all stderr should be directed
-0 [stdout] :The name of the file where all stoud should be directed
-3 [join] :join stdout and stderr to one file
-m [email times] :specify what times email will be sent at
-M [email ID] :specify the email the notices should be sent to
-1 h vmem=[memory size] :limitthe job's total memory usein M or G
-1 mem free=[memory needed] :specifythe amount of memory
-pe threaded [num threads] :tell SGE the job is threaded and how

many threads

Scriptfile:
directory/name : name of the scriptfile to be run
Example:

$ gsub —-cwd dateScript.sh

Check your job status: gstat

gstat [options][job ID]

gstat :isused to request the status of jobs, queues, or a batch server. The
request is written to standard out

Options:
—u : -- display jobs for a specific user
-7 : -- specify that a full status displays to be written to standard out
—-N : -- the name of the job
Examples:
$ gstat
$ gstat —-u userID
$ gstat —-j JjobID

Submit

You can submit your script by typing:

gsub /biodbA/WorkshopDir/R BioConductor/submit pima R to cluster.sh
The job should complete in approximately 10 seconds
Monitor your job by submitting the “gstat” command

The output will be written to your home directory as a
pdf file.

Exercise 2

A Microarray Example

74

Exercise Summary

Microarray expression data from 128 individuals with acute
lymphoblastic leukemia has been provided as a comma
separated file exprsMat.csv.

Several covariates such as age, sex, type, stage of the
disease etc. have been provided as another comma
separated file pData.csv.

Goals:
— Read in the expression data and the covariates into R objects.

— Perform data manipulations such as subsetting to arrive at a
smaller expression dataset with samples that we are interested
in.

— Generate MA plots from our subsetted data using the lattice
package.

Load Microarray Expression data into

an Rsession
e Read the data in

library (ibiRbioCWorkshop2011)

phenoPath <- system.file("extdata", "pData.csv", package="
ibiRbioCWorkshop2011™)

> pdOrig <- read.table (phenoPath, check.names = FALSE)

VvV Vv

> colnames (pdOrigqg)
[1] "cod" "diagnosis" "sex" "age"
[5] "BT" "remission" "CR" "date.cr"
[9] "t(4;11)" "t (9;22)" "cyto.normal" "citog"
[13] "mol biol" "fusion protein" "mdr" "kinet"
[17] "ccr" "relapse" "transplant" "f.ou"
[21] "date last seen"
>

expPath <- system.file("extdata", "exprsMat.csv", package="
ibiRbioCWorkshop2011")

> expOrig <- read.table (expPath, check.names = FALSE)

Subsetting Data

We make use of some of concepts of indexing, subsetting,
factors etc. to split our expOrig and pdOrig variables to
narrow down to the samples that we are interested in,

specifically, B-cell tumors with molecular biology type
"NEG" or "BCR/ABL".

bcell <- grep(""B", as.character (pdOrig
SBT))

types <- c("NEG", "BCR/ABL")

moltyp <- which (as.character (pdOrig
[["mol biol"]]) %in% types)

indx <- 1ntersect (bcell, moltyp)
psubData <- pdOrig[indx,]
exprsMat <- expOrig[, 1indx]

Recode the factor levels

The covariate data for some variables, for example BT

is represented using a variable of type factor with
distinct levels.

These variables can only take a distinct number of
categorical values. The levels can be obtained by using
the levels function on the factor variable.

Operations such as subsetting on a factor variable
subsets the factor but leaves the levels of the variable
unchanged.

In this exercise, we shall take a look at the levels of the
factor variables that we have just subsetted and
attempt to correct this problem.

Recode the factor levels

* Observe the levels for themol biol and
moltyp variables. Do you notice any
problem ?

Recode the factor levels

e Recode the factor levels for the mol biol and
mo 1t yp variables using the factor function.

> psubDataSBT <-factor (psubDataS$SBT)
> levels (psubDataS$SBT)
[1] "B" "Bl" "B2" "B3" "B4"

> psubDatal["mol biol"]] <- factor
(psubDatal[["mol biol"]])

> levels (psubDatal[["mol biol"]])
(1] "BCR/ABL" "NEG"

Compute summary statistics

* Create some summary statistics on the meta data variable
psubData using the aggregate and xtabs functions

> aggregate (psubData[, "age", drop = FALSE], by= list("sex"= psubData
Ssex,"molBiol"= psubDatal[["mol biol"]]), FUN = mean,na.rm = TRUE)
sex molBiol age
1 F BCR/ABL 39.93750
2 M BCR/ABL 40.50000
3 F NEG 29.75000
4 M NEG 24.85714
> aggregate (age ~ sex + mol biol’, data = psubData, FUN = mean)
sex mol biol age
1 F BCR/ABL 39.93750
2 M BCR/ABL 40.50000
3 F NEG 29.75000
4 M NEG 24.85714
> xtabs(relapse ~ sex + mol biol" , data = psubData)
mol biol
sex BCR/ABL NEG
F 7 3

M 9 18

vV V V V V V

Data visualization

Create M-A plots for the first 20 samples in our subsetted
expression intensity data. frame exprsMat, using the
xyplot function from the lattice package.
library(lattice)

mat <- exprsMat[,1:20]

A <- rowMeans (logZ2 (mat))

M <- logZ2(unlist (mat)) - A

Sample <- rep(colnames (mat), each=nrow(mat))

df <- data.frame (M, A, Sample, row.names=NULL,
check.names = FALSE)

plt <- xyplot(M ~ A | Sample, df,
panel=panel.smoothScatter)

Data visualization

1.5 3.0 1.5 3.0
LALLL L sl 1 1l

L1
12006|12007|12012(12019|12026
ey _,pl*-_\ sl | pnee ,;»'i\

B TR | SR

08012|08024/09008|08017|11005
P (VPR e o | 2
04010|04016/06002|08001|08011
Yoy o P '
01005|01010/03002|04007|04008
b | AR, < P, ey | e

S ‘-" _—“_z\-:-? .# -

EE R EEE R mEsEmmEmme
1.5 3.0 1.5 3.0 1.5 3.0

A

1.0
0.0
-1.0

IHEEN
W
|IRRARA

PR - I
000
1111l
Trrn

1.0
0.0
-1.0

y

s

?
TTTTT

|IHEEN|

PN - I
000
it
1
.,..P
AR A

Figure 1: M-A plot for 20 Samples produced using xyplot

Contact us

 |f you have any questions contact us at:
— arodrigul@bsd.uchicago.edu

— jandrade@bsd.uchicago.edu

e Or visit our website:
— http://cri.uchicago.edu

Flow Control

85

Flow Control

* R has the standard set of flow control functions
— Loops: for,while, and repeat
— Conditional evaluation: i £ and switch

* Can also use the apply family of functions
—apply, sapply, lapply, mapply, eapply
> apply(x, 2, mean)
computes the column means of a matrix x

* apply is not usually faster than a for loop, but it
is more elegant.

References

* Faraway, Julian J. Linear Models with R. Boca Raton, FL:
Chapman & Hall/CRC, 2005. Print.

* Gopalakrishnan, Nishant. "Introduction to R."
Introduction to R and Bioconductor. Fred
Hutchinson Cancer Research Center, Seattle, WA.
9-10 Dec. 2010. Lecture.

* Venables, Bill, and David M. Smith. "An
Introduction to R." The Comprehensive R
Archive Network. Ed. R Project. The R Foundation
for Statistical Computing. Web. 14 Apr. 2011.
<http://cran.r-project.org/doc/manuals/R-intro.html>.

Lists

An ordered set of elements that can be any type
of R object (vectors, other lists, functions, etc.)

Are useful for grouping related things. Many R
functions return lists.

One-based indexing

To create list use:

> lst<- list(a=1:3, b="ciao", c= sqgrt)
> 1st

> 1stSc(81)

Subsetting lists

Use the [
> Ist]1
Usethe [[]] operator to extract a list element

> 1st[[1]]

Use the S operator to get a named element of the list
> 1stS$a

To get a specific value in "a" add the [] operator

> 1stSal2]

Creating subsets with logical expressions is also
possible

Can assign values as well

] operator to extract a sublist
]

