Day 2

- Brief Introduction
- Bad News
- Good News
- Software Environment
- PBS Directives
- Client Commands
- Job Priority
- MPI
Brief Introduction

• CRI
• CRI Infrastructure
• My Team
• Me
• Yesterday’s session
Bad News

• Users not understanding the software environment (later!)
• Scheduling slow for clinical work
• Resource manager problems
• Scheduler crash
• Scratch space issues
• Job Array Problems
• Job Geometry Changing
Software Environment Confusion

• Problem:
 – Users seem to be confused with how the software environment (Lmod) works

• Solution:
 – Cover it again in today’s session
 – User Guide
Clinical Scheduling

• Problem
 – Some clinical work that influences patient care has been slow to run
 – Had purchased exclusive nodes on Tarbell
 – Feel users can take over large memory and mid-tier nodes
 – Giving them exclusive nodes on Gardner would let them

• Solution
 – Partitions
 – Reservations
Proposed Limits

• Overall
 – Processor Cores: 500
 – Memory: 2 TB

• Standard Nodes
 – Processor Cores: 500

• Mid-Tier Nodes
 – Processor Cores: 100 cores

• High-Tier Nodes
 – Processor Cores: 14 cores
Torque Issues

• Problem:
 – Error message: “server is shutting down”
 – Problem with the init script used to start/stop Torque

• Solution:
 – Wrote new init script
 – Fixed in the latest version of Torque (released 3/31/17)
Torque Issues

• Problem:
 – PBS Server crashed (three times!!!)
 – This is an issue with validating PBS directives
 • #PBS –t 1-
 • #PBS walltime=1;00:00

• Solution:
 – Hotfix (fixed some problems)
 – Fixed in the latest Torque Release
Moab Crash

• Problem:
 – Moab crashed hard and was down for close to 8 hours
 – This was due to a corrupt job that needed to be tracked down

• Solution:
 – Hotfix (included in next release as well)
 – Still have yet to determine what caused the corrupt job
Scratch Space Issues

• Problem:
 – Two OS Hard Drives were lost on our Scratch Servers
 – Replacements causing problems too

• Solution:
 – Servers have been removed for maintenance
 – Storage at half capacity
Scratch Space Issues

• Problem:
 – Scratch Space can be slow at times
 • Only have two scratch servers instead of four
 • Negative cache

• Solution:
 – Regain full strength in the scratch environment
 – Lengthen time for cache
 – Make sure cache is always up-to-date
Job Array Problems

• Problem:
 – Job Arrays tend to get stuck
 – Will show up in Torque as running but not Moab

• Solution:
 – Restart pbs_server
 – Fixed in the next release (maybe)
Job Geometry Changes

• Problem:
 – Jobs changed from 4 cores to 1 core
 – Only happened to two users

• Solution:
 – Can be fixed on the sysadmin level
 – Working with Adaptive to handle the issue
Good News

- 113 users are now on Gardner
- 74% of CPU hours for March were on Gardner
- Amount of FLOPS completed in 3 months on Gardner is equivalent to 8 months on Tarbell
- Half of Tarbell is decommissioned
- Most of the positive feedback on Gardner has been computational speed
- New contract with Adaptive Computing (3 years)
- Tony
Tarbell Plans

• Half the cluster decommissioned on 3/31/17
• Who should be using Tarbell
 – Have a Gardner account and a qualifying analysis between the two systems
 – Those who have applied and are waiting for a Gardner account
 – Those who have purchased exclusive nodes on Tarbell
 – Graham School biomedical informatics class
• June 2017 – Rest of Tarbell will be decommissioned
Software Environment

• Tarbell -> Environment Modules
 – Flat module system
 – Modules written in TCL
 – Last Update: December 2012

• Gardner -> Lmod
 – Hierarchical module system
 – Modules written in Lua
 – Last Update: August 2016
Lmod Basics

• See which modules are available to be loaded
 – module avail

• Load packages
 – module load <package1> <package2>

• See which packages are loaded
 – module list

• Unload a package
 – module unload <package>
Lmod Basics

• Swap compilers
 – `module swap gcc/5.4.0 gcc/6.1.0`

• Find a module by keyword
 – `module keyword alignment`

• List all possible versions of a module
 – `module spider bwa`

• Print detailed information for a specific module
 – `module spider bwa/0.7.5`
Lmod Basics

• Save your loaded modules as the default
 – module save

• Restore your default modules
 – module restore
Lmod Basics

• Clean up environment
 – module purge

• Save a named collection
 – module save <collection>

• Restore a named collection
 – module restore <collection>

• List all the modules in a collection
 – module describe <collection>
Lmod Basics

• Print help message
 - module help <package>

• Print description
 - module whatis <package>

• Get help on Lmod
 - module help
Safety Features of Lmod

- Users can only load one version of a module at a time
 - For example, only one BWA module can be loaded
- Can only load one module from a family at a time
 - Compilers
 - MPI
- Conflict
- Prereq
- Prereq_any
How do I find?

• Perl Modules
 – instmodsh

• Python packages
 – pip freeze

• R packages
 – installed.packages()
Elog Example

• Where do we need help?
PBS Directives

- procs vs. ppn
 - Use procs only for MPI
- mem vs. pmem
- Accounting - #PBS -A
- gpus
- features
- mail - #PBS –M, #PBS –m
- Priority - #PBS –p
- Environment variables - #PBS –V, #PBS -v
Client Commands

- Job monitoring (all jobs)
 - qstat
 - showq

- Job monitoring (individual jobs)
 - qstat -f <jobid>
 - checkjob <jobid>

- Partition monitoring (immediate available resources)
 - showbf

- When will my job start?
 - showstart <jobid>
 - Evaluates historical data, reservations, priority backlogs
mjobctl

• Cancel Job: -c <jobid>
• Hold Job: -h user <jobid>
• Rerun Job: -e <jobid>
Reservations

• When to request them?
 – Deadline
 – Large batch of jobs

• showres
 – Shows all reservations that apply to you
Job Arrays

• qsub –t <range>%<limit>

• $PBS_ARRAYID

• How to track your job arrays?
 – showq
 – checkjob –v
 – qstat -t
Job Dependencies

- `#PBS -W depend=type:jobid[:jobid[:jobid...]]`

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>after</td>
<td>This job may be scheduled after jobs jobid have started</td>
</tr>
<tr>
<td>afterok</td>
<td>This job may be scheduled after jobs jobid have completed with no errors</td>
</tr>
<tr>
<td>afternotok</td>
<td>This job may be scheduled after jobs jobid have completed with errors</td>
</tr>
<tr>
<td>afterany</td>
<td>This job may be scheduled after jobs jobid have completed with or without errors</td>
</tr>
<tr>
<td>before</td>
<td>After this job begins, jobs jobid may be scheduled</td>
</tr>
<tr>
<td>beforeok</td>
<td>After this job completes without errors, jobs jobid may be scheduled</td>
</tr>
<tr>
<td>beforenotok</td>
<td>After this job completes with errors, jobs jobid may be scheduled</td>
</tr>
<tr>
<td>beforeany</td>
<td>After this job completes with or without errors, jobs jobid may be scheduled</td>
</tr>
</tbody>
</table>
Quality of Service

- `#PBS -l qos=<qos_name>`
- Standard = 1000
- Premium = 2000
- Biocore = 3000
- Deadline = 4000
- VIP = 5000
Job Priority

• How does that work.

• Starts at 1000

• Add one every scheduler iteration
MPI Example

• Hello World
• Calculating the volume of a molecule
Upcoming Work

- Trickle – qsub replacement
- Dbuilder
- Data staging
- Software statistics (Tony)
- Viewpoint
- Remote Visualization (?)
- User Guide
- Elog
- Future training (?)