Introducing Gardner

Center for Research Informatics

Established in 2011 to support BSD research

Mission:

 To provide informatics resources and service to the BSD, to participate in clinical and biomedical research of the highest scientific merit, and to support and promote research and education in the field of informatics

Resources and Services

- Clinical data for research
- Bioinformatics data analysis
- Computing infrastructure
 - Storage
 - HPC
 - Virtual Servers
- Research data management tools
- Custom-built applications
- Educational opportunities

http://cri.uchicago.edu

CRI Infrastructure Team

- Director
 - Thorbjorn Axelsson
- High Performance Computing
 - Mike Jarsulic
 - Tony Aburaad
- Virtual Servers
 - Andy Brook
 - Sneha Jha
- Storage
 - Olumide Kehinde
- Utility Infielder
 - Dan Sullivan

About Me

- Lived in Pittsburgh for about 32 years
- Attended the University of Pittsburgh (at Johnstown)
- Bettis Atomic Power Laboratory (2004-2012)
 - Scientific Programmer (Thermal/Hydraulic Design)
 - Analyst USS Gerald R. Ford
 - High Performance Computing
- University of Chicago (2012 present)

USS Gerald R. Ford

A Few Weeks Ago!!!

"Gerald R. Ford USS, what a place...it really feels like a place."

About Tony

- Masters student in computer science at UChicago
 - Completing coursework in machine learning, distributed computing, and iOS
- Spent last summer at the Computation Institute working on a caching tool for the Open Science Grid
- Has been helping with Gardner at the CRI since November
- Dislikes mimes

CRI HPC Clusters September 2012

- Prudential Data Center
 - BRDFCLUSTER
 - IBICLUSTER
 - IBIBMEM

- Kenwood Data Center
 - BIOCluster

Tarbell

- Purchased by the CRI in 2012 by the previous staff
- Dell cluster utilizing AMD Bulldozer processors
- Infiniband QDR
- 110 TB Scratch Space
- Why named Tarbell?

Who was Harlan Tarbell?

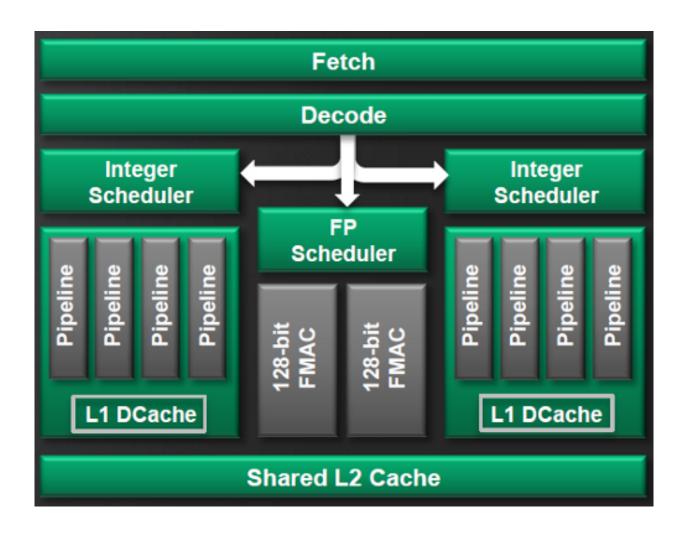
- Born in Delavan, IL
- Grew up in Groveland, IL
- Magician
- Doctor of Naprapathy
- Futurist

Themes:

- Beginner mistakes
- Predicting the future
- Quackery

Beginner Mistakes

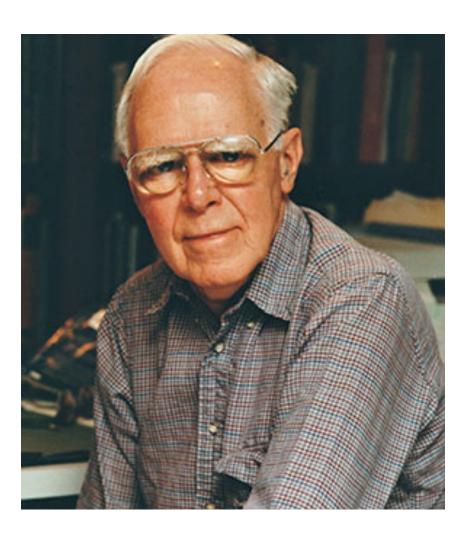
- Scratch space
 - Set up poorly where the system would become unstable
 - Utilized only 60 TB of space initially
 - Hardware had low RAM (24 GB per node)
- Login node
 - Only one (fixed)


Predicting the Future

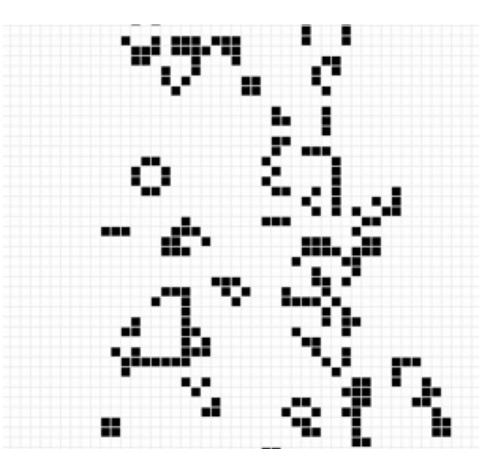
- Compute Nodes
 - Only one tier of memory (fixed)
- Infiniband
 - Expecting QDR to stick around forever
 - Poor strategy for future clusters

AMD Bulldozer

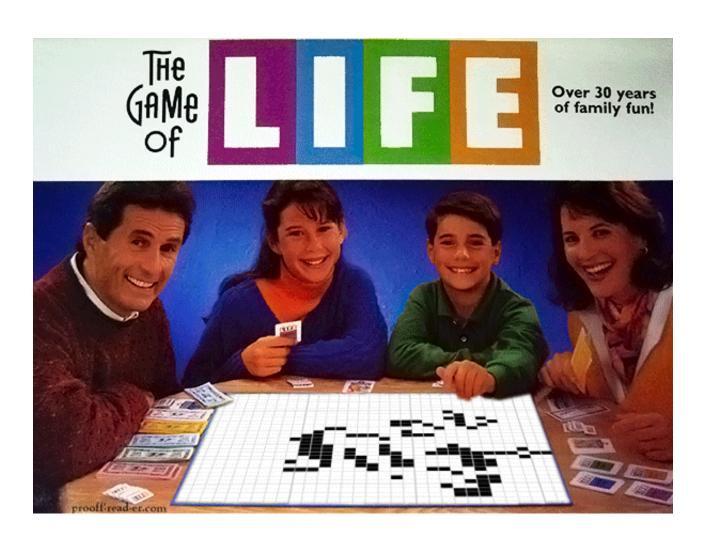
- Did not live up to expectations
- Shared Floating Point Unit
- Lawsuit


Quackery

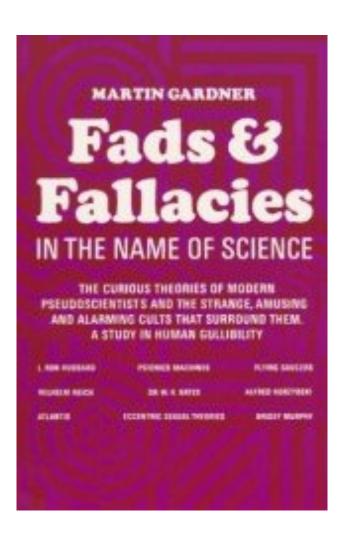
Tarbell Metrics


- Since December 2013
 - 234 Users
 - Total User Jobs: 4.6 Million
 - Total CPU Hours: 18.29 Million
 - Average Queue Hours: 2.94 Hours
 - Average Job Efficiency: 65%
 - Average Wall Clock Accuracy: 11%

Who was Martin Gardner?

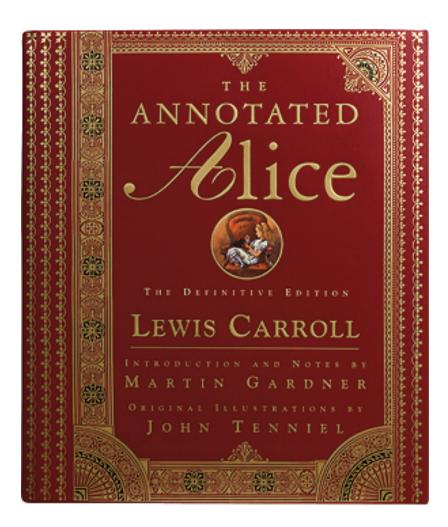

- Graduate of the University of Chicago
- Yeoman on the USS Pope during WWII
- Amateur Magician
- Mathematical Games
- Skepticism
- Literature
- Art

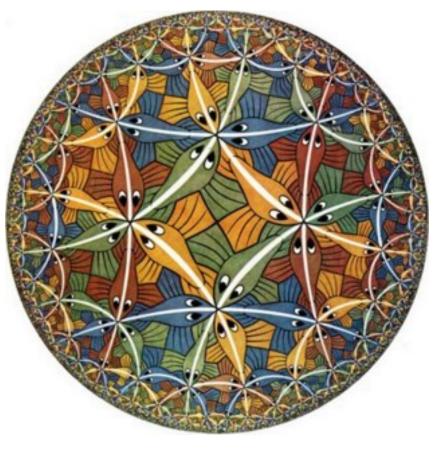
Mathematical Games

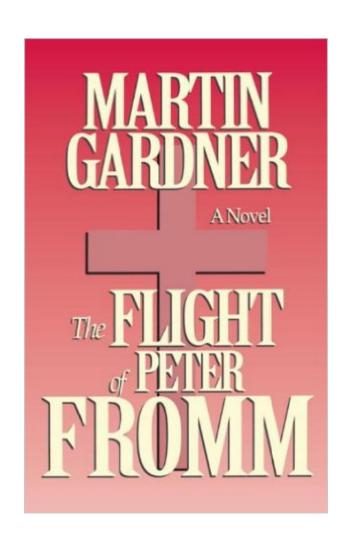


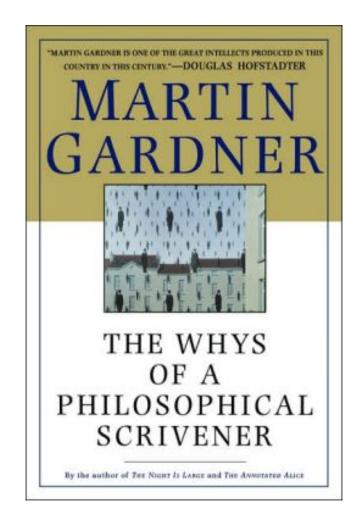
- Flexagons
- Polynominoes
- Game of Life
- Newcomb's Paradox
- Mandelbrot's Fractals
- Penrose Tiling
- Public Key Cryptography
- Best bet for simpletons paradox

Mathematical Games




Skepticism


- Original founders of CSICOP
- Critic of:
 - Lysenkoism
 - Homeopathy
 - Chiropractic
 - Naturopathy
 - Orgone Chambers
 - Dianetics


Literature and Art

Also of Interest...

What is HPC?

Node Count Comparison

Node Type	Tarbell	Gardner
Standard Compute Nodes	34	88
Mid-Tier Compute Nodes	0	28
Large Memory Nodes	2	4
GPU Nodes	0	5
Xeon Phi Nodes	0	1
Interactive Nodes	2	2 (eventually 4)
Remote Viz Nodes	0	Possibly 2

Core Count Comparison

Node Type	Tarbell	Gardner
Standard Compute Nodes	2176	2464
Mid-Tier Compute Nodes	0	784
Large Memory Nodes	80	112
GPU Nodes	0	140
Xeon Phi Nodes	0	28
TOTAL	2256	3528

Standard Node Comparison

Attribute	Tarbell	Gardner
Processor	AMD Opteron 6274	Intel Haswell E5-2683 v3
Clock Speed	2.2 GHz	2.0 GHz
Processors per Node	4	2
Cores per Processor	16	14
Instructions per Cycle	8 (or 4)	16
RAM per Core	4 GB	4.5 GB

Mid-Tier Compute Nodes

Attribute	Gardner	
Processor	Intel Haswell E5-2683 v3	
Clock Speed	2.0 GHz	
Processors per Node	2	
Cores per Processor	14	
Instructions per Cycle	16	
RAM per Core	16 GB	

Large Memory Node Comparison

Attribute	Tarbell	Gardner
Processor	Intel Westmere E7-4860	Intel Haswell E5-2683 v3
Clock Speed	2.27 GHz	2.0 GHz
Processors per Node	4	2
Cores per Processor	10	14
Instructions per Cycle	8	16
RAM per Core	25.6 GB	45.7 GB

GPGPU Nodes

CPU Attribute	Gardner
Processor	Intel Haswell E5-2683 v3
Clock Speed	2.0 GHz
Processors per Node	2
Cores per Processor	14
Instructions per Cycle	16
RAM per Core	8 GB
Accelerator	Nvidia Tesla K80
GPU	Tesla GK210 (x2)
Cores per GPU	2496
RAM per Accelerator	24 GB

Xeon Phi Nodes

CPU Attribute	Gardner	
Processor	Intel Haswell E5-2683 v3	
Clock Speed	2.0 GHz	
Processors per Node	2	
Cores per Processor	14	
Instructions per Cycle	16	
RAM per Core	8 GB	
Accelerator	Intel Xeon Phi 5110P (x2)	
Cores per Accelerator	60	
RAM per Accelerator	8 GB	

Scratch Space Comparison

Attribute	Tarbell	Gardner
Processor	Intel Westmere E5620	Intel Haswell E5-2623 v3
Clock Speed	2.4 GHz	3.0 GHz
Processors per Node	2	2
Cores per Processor	4	4
Instructions per Cycle	8	16
RAM per Node	24 GB	64 GB
Cache Pool	N/A	200 GB
Usable Space	110 TB	350 TB
Interconnect Bandwidth	40 Gb/s	56 Gb/s

Benchmarking

Attribute	Tarbell	Gardner
Theoretical Performance	44.2 TFLOPs	112.8 TFLOPs
Actual Performance	21.2 TFLOPs	97 TFLOPs
GPU Theoretical Performance	N/A	14.5 TFLOPs
GPU Actual Performance	N/A	11.4 TFLOPs
Xeon Phi Theoretical Performance	N/A	2 TFLOPs
Xeon Phi Actual Performance	N/A	1.7 TFLOPs

FLOPs = Nodes * Number of Cores/Node * Frequency * Operations per Cycle

Software

- Compilers
 - Intel
 - PGI
 - GNU
 - Java 7 and 8
 - DLang
- MPI
 - OpenMPI
 - MPICH
 - Intel MPI

- Software Environment
 - Lmod
- Scheduler
 - Moab 9.1
- Resource Manager
 - Torque 6.1

What is Going to Happen To?

- Tarbell
 - Decommissioned: 3/31/17
- LMEM-CRI
 - Decommissioned
- Stats
 - Repurposed
 - X enabled login nodes for the cluster
 - Commercial software: SAS, Stata, MATLAB, etc.
- Galaxy
 - Decommissioned with Tarbell

Obtaining an Account

- Prerequisites: BSD Account
- Sign up for and account
 - http://cri.uchicago.edu
 - Early Access
 - Email Address for Job Output
 - Emergency Phone Number
 - Software Requests
 - Level of Experience
 - Collaborator Accounts

Being a Good HPC Citizen

- 1. Do not run analysis on the Login Nodes!
- 2. Cite the cluster and the software used in your publications.
- 3. Try to be accurate with your resource requests.
- 4. Allow the CRI to install open source software for you.
- 5. If you are going to run an analysis that is much larger than normal, let us know in advance.

Being a Good HPC Citizen

- 6. Provide feedback.
- 7. Clean up your Scratch Storage.
- 8. If using a script to submit, sleep for a few seconds in between each submission.
- 9. Be sure to release memory in your scripts.
- 10. If you have a question, don't hesitate to ask us.
- 11. If you notice a problem, report it.

Citations

- The continued group and support of the CRI's HPC program is dependent on demonstrable value.
- Citing the cluster allows us to justify purchasing faster clusters with more capacity in the future.
- Sample Citation:
 - This work utilized the computational resources of the Center for Research Informatics' Gardner HPC cluster at the University of Chicago (http://cri.uchicago.edu).
- Make sure you site the software used as well!

Software Installation

- Software request can be submitted via the Resource Request forms at http://cri.uchicago.edu
- Advantages to allowing the CRI to install open source software:
 - Other users can utilize it
 - Support nightmare
 - Portability
- Disadvantages
 - It may take a few days (let us know the priority)

How to Get Support

- Call the CRI Help Desk
 - **-** 773-834-8475
- Email hpc@rt.cri.uchicago.edu to submit a ticket or use the Request Forms on the CRI Website
- Meet with Mike at our Peck Office (N161)
 - Tuesday and Thursday Afternoons
 - Schedule an appointment
- User Group Meetings
 - Once a month at Peck

Examples

- Get an account
 - Resource Request Form
- Have software installed
 - Resource Request Form
- Job extension
 - Email hpc@rt.cri.uchicago.edu
 - CC: Mike (mjarsulic@bsd.uchicago.edu)
- Major problem on the cluster
 - Call Help Desk
 - Email hpc@rt.cri.uchicago.edu

Logging In

- On Campus
 - ssh to gardner.cri.uchicago.edu

- Off Campus
 - VPN
 - CVPN (CNET Account Required)
 - BSDVPN
 - ssh to gardner.cri.uchicago.edu

Storage

- Home Directories (/home/<userid>)
 - Permanent, Private, Quota'd, Not Backed Up
 - $-1 \,\mathrm{Gb/s}$
- Lab Shares (/group/<lab_name>)
 - Permanent, Shared, Quota'd, Backed Up
 - $-1 \, \text{Gb/s}$
- Scratch Space (/scratch/<userid>)
 - Purged, Private, Not Quota'd, Not Backed Up
 - $-56 \,\mathrm{Gb/s}$
 - Purged every 6 months (to start)

Software Environment

- Tarbell -> Environment Modules
 - Flat module system
 - Modules written in TCL
 - Last Update: December 2012
- Gardner -> Lmod
 - Hierarchical module system
 - Modules written in Lua
 - Last Update: August 2016

Lmod Basics

- See which modules are available to be loaded
 - -module avail
- Load packages
 - -module load <package1> <package2>
- See which packages are loaded
 - -module list
- Unload a package
 - -module unload <package>

Scheduling Jobs (Defaults)

- Maximum Amount of Walltime
 - 14 Days
- Maximum Amount of Processors
 - 500 concurrent
- Maximum amount of jobs
 - 500 concurrent
- Maximum amount of memory
 - 2 TB

Job Scheduling (Queues)

- Route
 - Default Queue (non-executable)

- Express
 - 1 node; 1 proc; <= 4 GB RAM; <= 6 hours</p>

- Standard
 - Multi-node; Multi-proc; <= 8 GB RAM</p>

Job Scheduling (Queues)

- Mid
 - Multi-node; Multi-proc; > 8 GB RAM; <=24 GB RAM

- High
 - Multi-node; Multi-proc; > 24 GB RAM

Torque Client Commands

- Submit a job
 - qsub <scriptname>
- Delete a job
 - qdel <jobid>
- Job status
 - qstat
- Extended Job Status
 - qstat -f

Torque Directives

- Specify a Job Name
 - #PBS -N <JobName>
- Specify nodes and cores
 - #PBS -l nodes=x:ppn=y
- Specify wall clock time limit
 - #PBS -1 walltime=[dd:[hh:[mm:]]]ss
- Specify the memory limit
 - #PBS -l mem = < x > qb

Torque Directives

Specify the shell to execute the script

Specify the STDOUT location

Specify the STDERR location

qsub Arguments

Run and interactive job

Submit a job and immediately hold it

```
-qsub -h <jobscript>
```

Volume of a Molecule

Other Possible New Features

- Web Portal (w/ Templates)
- Remote Visualization
- Data Staging
- NUMA controlled jobs
- Improved checkpointing