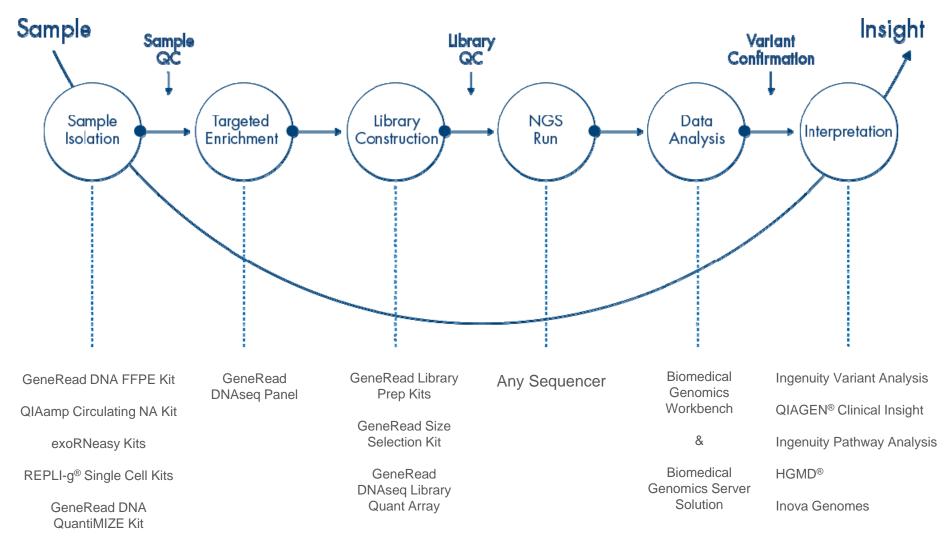


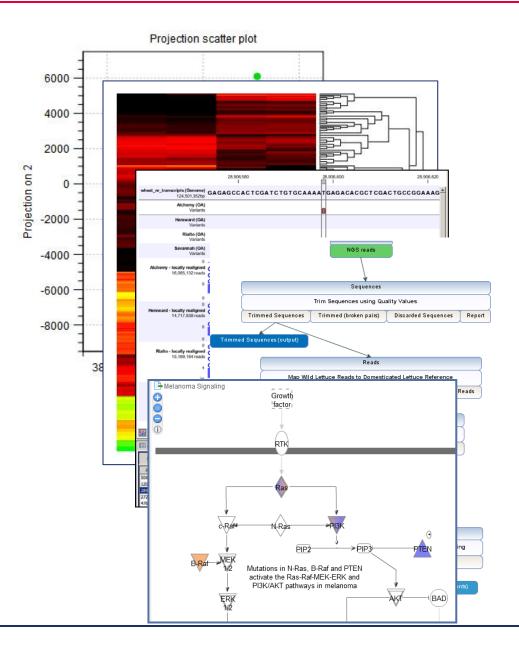
Install IPA: www.qiagenbioinformatics.com/product-login

IAGEN				BIOINF	DRMATICS POWERED BY		€DIO BIOB∆SE
ne > Product Log in		SOLUTIONS	PRODUCTS	INSIGHTS	SUPPORT SHC		Search C
INGENUITY	Ingenuity Pathway Analysis						
INGENUITY	Ingenuity Variant Analysis						Þ
QIAGEN	QIAGEN Clinical Insight						Ø
	Biobase						Ø
(LL bio	myCLC					X	


Sample to Insight

Ingenuity Pathway Analysis (IPA) Training: Maximizing the Biological Interpretation of Gene, Transcript & Protein Expression Data with IPA

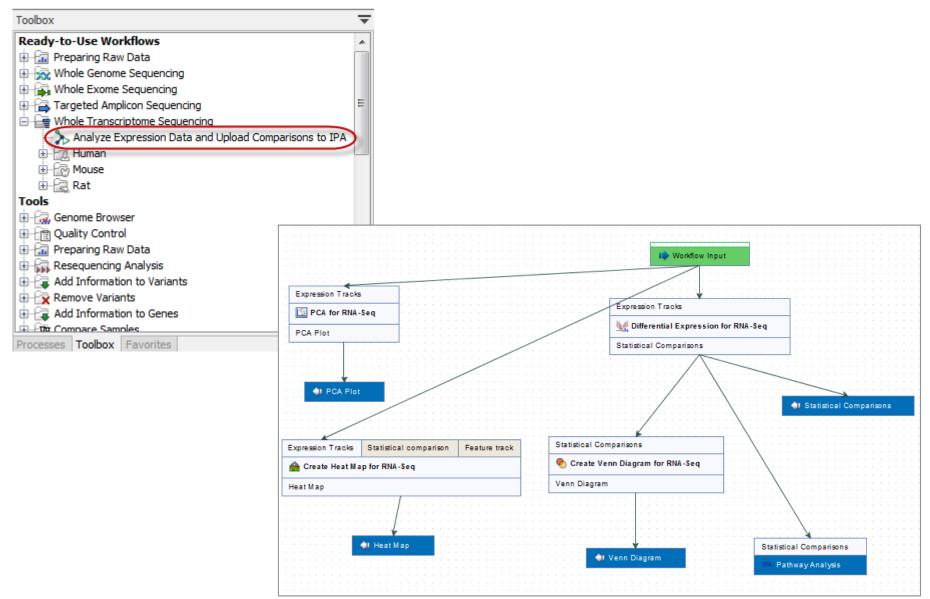
Jeff Knight, Ph.D. Field Application Scientist, Bioinformatics jeffrey.knight@qiagen.com



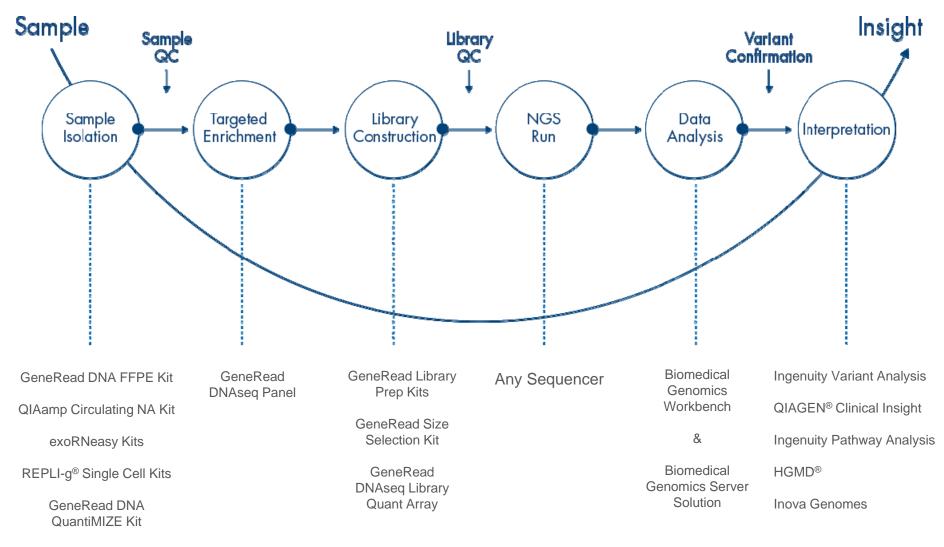
RNeasy Kits

Genomics Workbench and Biomedical Genomics Workbench

- QC and preprocess NGS data (RNA-Seq, smRNA, and DNAseq reads)
- Differential expression and statistical analysis for RNA-Seq and smRNA
- Generate, annotate, and compare high-confidence variant calls
- CNV detection
- ChIP-Seq, Bisulfite sequencing
- Genome assembly and finishing
- Microbial Metagenomics, typing
- Facilitate analysis with interactive visualization
- Construct automated workflows in user friendly interface
- Can scale to organization's needs



RNAseq Analysis: Identify Differentially Expressed Genes

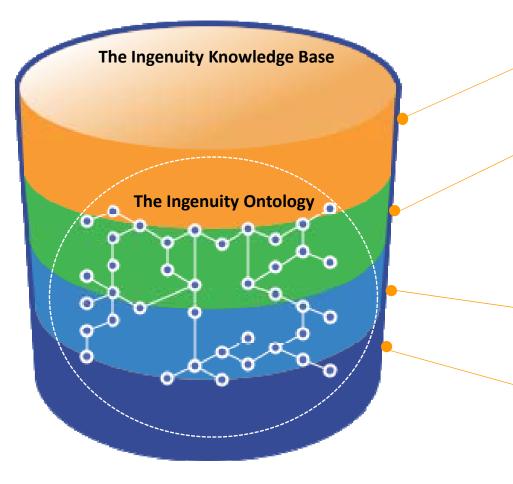


Analyze Expression Data and Upload to IPA Workflow

Sample to Insight

RNeasy Kits

How can IPA help you?


IPA

- Deep pathway understanding of a single gene/protein
 - Drug/therapeutic target discovery
- Biological understanding of large data sets, including
 - □ Transcriptomics differential gene expression (array and RNAseq)
 - IsoProfiler: filter for transcript expression and annotation of interest
 - □ Proteomics differential protein expression
 - □ Phosphoproteomics differential protein phosphorylation
 - □ Genes with loss/gain-of-function variants
 - Metabolomics
 - □ miRNA expression
 - □ Methylation
 - Gene Lists
 - ChIP-Seq
 - siRNA screening

Ingenuity Content

Ingenuity Knowledge Base

Ingenuity Findings

Ingenuity® Expert Findings – Manually curated Findings that are reviewed, from the full-text, rich with contextual details, and are derived from top journals.

Ingenuity® ExpertAssist Findings -

Automated text Findings that are reviewed, from abstracts, timely, and cover a broad range of publications.

Ingenuity Modeled Knowledge

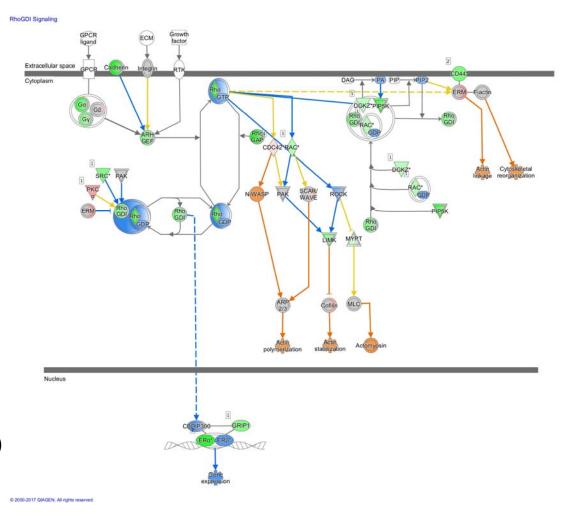
Ingenuity[®] Expert Knowledge – Content we model such as pathways, toxicity lists, etc.

Ingenuity[®] Supported Third Party

Information – Content areas include Protein-Protein, miRNA, biomarker, clinical trial information, and others

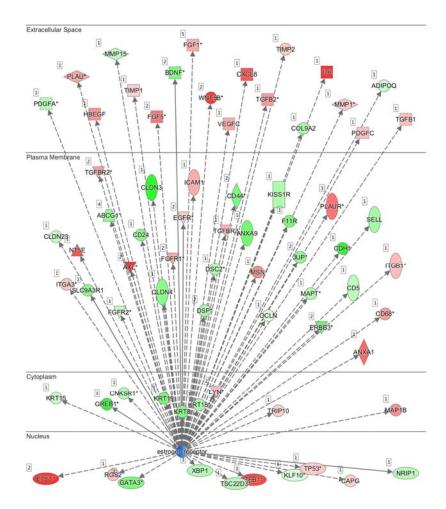
Gene View Pages in IPA

How can IPA help you?


IPA

- Deep pathway understanding of a single gene/protein
 - Drug/therapeutic target discovery
- Biological understanding of large data sets, including
 - □ Transcriptomics differential gene expression (array and RNAseq)
 - IsoProfiler: filter for transcript expression and annotation of interest
 - □ Proteomics differential protein expression
 - □ Phosphoproteomics differential protein phosphorylation
 - □ Genes with loss/gain-of-function variants
 - Metabolomics
 - □ miRNA expression
 - □ Methylation
 - Gene Lists
 - ChIP-Seq
 - siRNA screening

Canonical Pathways Analysis

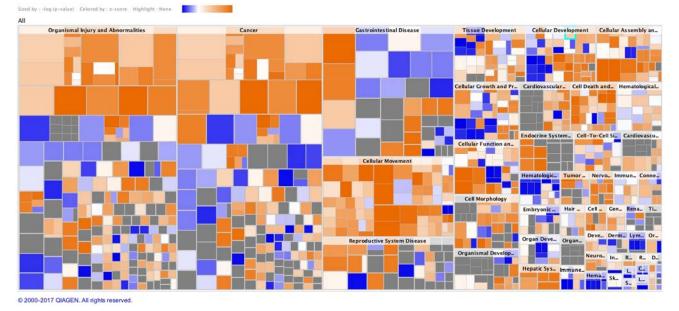

- Which metabolic and cell signaling pathways show a significance of enrichment for a group of genes?
- What are the predicted upstream and/or downstream effects of activation or inhibition of molecules in a pathway given molecules with "known" activity? (Molecule Activity Predictor)

Upstream Analysis

- Use published experimental molecular interactions to identify upstream regulators
- Identify upstream regulators by determining gene enrichment in downstream genes
- Predict the activity state of regulators by correlating literature reported effects with observed gene expression

© 2000-2017 QIAGEN. All rights reser

Upstream Analysis – Mechanistic Networks

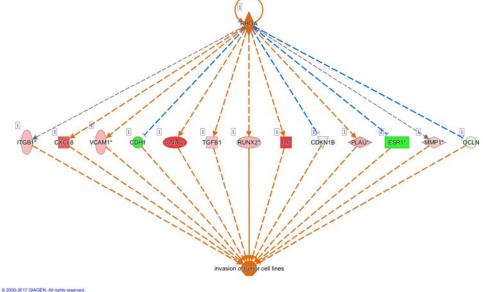

Upstream Regulators \ Ca		Diseases & Functions Regulator Effect	s \ Networks \ Lists \ My Path	ways \ Molecules \			
	usal Networks \						
ADD TO MY PATHWAY ADD TO MY LIST DISPLAY AS NETWORK CUSTOMIZE TABLE MECHANISTIC NETWORKS 🔊 🕒 🖆 p-value of over 2.01E-16 - 3.95E-06 (p1 of 26) 🗸 🕼 🕅 More Inf							
Jpstream Regulator	Expr Log Ratio	🝸 🗶 Molecule Type	Predicted Activation State	Activation z-score	🗵 👝 p-value of overlap	🗵 Target molecules in d 🗊 🗵	Mechanistic Network
rgfb1	† 3.000	growth factor	Activated	3.592	2.01E-16	↑ABCE1, ↑ABCF1,all 330	1066 (19)
SR 1	+-12.090	ligand-dependent nuclear r		-0.204	2.53E-15	+ABCA3, +ABLIM1,all 268	936 (18)
eta-estradiol		chemical – endogenous ma		-0.775	3.96E-15	◆ABCA3, ◆ABLIM1,all 345	1111 (19)
RBB2	+-4.440	kinase		0.360	2.69E-12	↑ABL1, ↑ACAA2,all 148	890 (19)
strogen receptor		group	Inhibited	-5.346	3.00E-12	+ABCG1, +ADIPOQ,all 71	925 (17)
IYC	† 0.890	transcription regulator		1.849	2.79E-11	♦ABCA2, ♦ABCA7,all 213	922 (10)
P53	† 2.390	transcription regulator		-0.634	6.45E-10	◆ABAT, ◆ABCB4, •all 263	1003 (22)
ST5	↓ -1.030	other		-1.053	1.18E-09	↓ABLIM1, ↑ACAT2,al 74	
DSM	† 2.440	cytokine	Activated	2.416	1.98E-09	★ABCC4, ★ABCC8,	971 (19)
R3C1	† 4.400	ligand-dependent nuclear r		-1.210	2.31E-09	↑ABL1, ↑ACTB, ↑all 142	824 (14)
	ntify poter				estrogen recept	tor	
	ntify poter stream reg				estrogen recept	tor	
ups	stream reg	julator			estrogen recept	tor	
ups		julator			estrogen recept	tor	
ups	stream reg	julator			estrogen recept	tor	
ups sig	stream reg nal transd	gulator uction	beta	estradiol	estrogen recept	tor	ERK
ups sig	stream reg	gulator uction	beta	estradiol	estrogen recept	tor	ERK
ups sig • Usi	stream reg nal transd	julator uction	beta	estradiol	estrogen recept	tor	ERK
ups sig • Usi	stream reg nal transd	julator uction	beta	estradiol	estrogen recept	tor	ERK
ups sig • Usi dov	stream reg nal transd ng shared vnstream	gulator uction I gene	beta SP1*	estradiol	estrogen recept ECF	tor RELA*	
ups sig • Usi dov	stream reg nal transd ng shared vnstream	julator uction	1	estradiol	G	tor RELA*	
ups sig • Usi dov effe	stream reg nal transd ng shared vnstream ects and g	gulator uction I gene ene-gene	1	estradiol	G	tor RELA*	ERK 1 TWIST1
ups sig • Usi dov effe	stream reg nal transd ng shared vnstream	gulator uction I gene ene-gene	1	estradiol	G	tor RELA*	ERK 1 TWIST1
ups sign • Usi dov effe inte	stream reg nal transd ng shared vnstream ects and g eractions,	gulator uction gene ene-gene pathways	1	estradiol	G	tor	
ups sign • Usi dov effe inte	stream reg nal transd ng shared vnstream ects and g eractions,	gulator uction I gene ene-gene	1	estradiol	G	tor RELAS	

© 2000-2017 QIAGEN. All rights reserved.

Visualize and predict the biological impact of gene expression changes

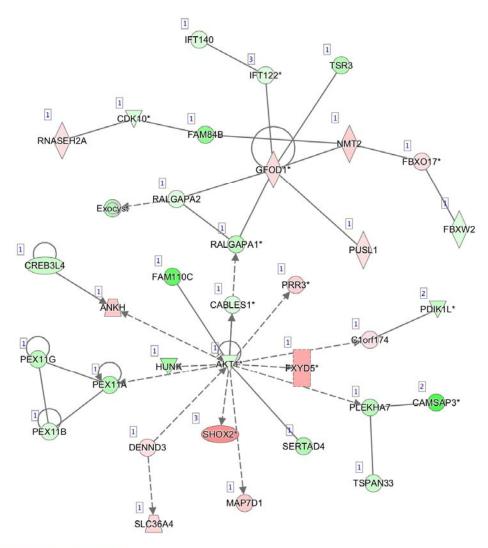
Diseases & Functions

- Identify key biological processes influenced by differentially expressed genes
- Understand whether cellular processes are being driven up or down by correlating observed expression with reported experimental gene effects



- Each box represents a biological process or disease
- The size of the box represents gene enrichment
- The color of the box indicates the predicted increase or decrease

Regulator Effects


- Hypothesis for how a phenotype, function or disease is regulated in the data set by activated or inhibited upstream regulators
- Explain impact of upstream molecules on downstream biology
- Explain potential mechanism for a phenotype or drug
- Define drug targets
- Discover novel (or confirm known) regulator → disease/phenotype/function relationships

Networks

- To show as many interactions between user-specified molecules in a given data set and how they might work together at the molecular level
- Highly-interconnected networks are likely to represent significant biological function

© 2000-2017 QIAGEN. All rights reserved.

- 1. Launch Core Analysis: File > New > Core Analysis
- 2. Upload Data (gene expression, protein expression, metabolomics, etc.)
- 3. Set Core Analysis Settings and Run Analysis
- 4. Interpret Results

IPA Core Analysis input

- RNA-seq, microarray, miRNA, proteomic, genomic, SNP, or metabolic data
- Measurement calculations (e.g. differential expression and significance) are made outside of IPA prior to upload
- Observation for a given experimental condition...
 - □ A list of molecule identifiers (gene, protein, etc.)
 - □ Corresponding measurement values (fold change, p-value, etc.)
- Single-observation data sets one experimental comparison
 - Case vs. control
 - □ Mutant vs. wild-type
 - □ Treated vs. untreated
- Multiple-observation data sets more than one experimental condition
 - □ A time course experiment with multiple time points
 - Dose response experiment with multiple doses
 - □ Measurement of multiple cell types or disease subtypes

ID (required)

Gene ID
NM_130786
NR_015380
NM_138932
NM_014576
NM_138933
NM_000014
NR_026971
NM_144670
NM_001080438
NM_017436
NM_016161
NM_015665
NM_023928
R 0 1 35
<u>Identifier Examples</u> Array IDs dbSNP
Ensembl
Entrez Gene

dbSNP Ensembl Entrez Ger GenBank IPI KEGG PubChem RefSeq

UniProt...

Sample to Insight –

Data upload format examples

ID (required)	Measure	ments (recom	mended)
Gene ID	Log2Ratio	p-value	Max RPKM
NM_130786	0.14	8.68E-01	2931.69
NR_015380	-0.99	2.24E-01	1649.26
NM_138932	-0.02	9.83E-01	1.67
NM_014576	-0.02	9.85E-01	1.77
NM_138933	0.02	9.79E-01	1.83
NM_000014	-4.79	1.02E-01	239.75
NR_026971	-0.67	6.17E-01	213.79
NM_144670	-5.96	1.30E-01	610.64
NM_001080438	-1.97	3.47E-01	3.91
NM_017436	-1.09	5.02E-01	6186.83
NM_016161	2.02	5.97E-02	149.85
NM_015665	-0.27	5.68E-01	13330.34
NM_023928	-1.42	1.03E-02	22828.45
~B~0~4~35~	1/6	5.9 E. 91	6.3

Identifier Examples	Directional Compariso	ns Other Measurements
Array IDs	Expr Ratio	Expr p-value
dbSNP	Expr Fold Change	Expr FDR (q-value)
Ensembl	Expr Log Ratio	Expr Intensity/RPKM/FPKM
Entrez Gene	Variant Loss/Gain	Variant ACMG Classification
GenBank	Phospho Ratio	Phospho p-value
IPI	Phospho Fold Change	Phospho FDR (q-value)
KEGG	Phospho Log Ratio	Phospho Intensity
PubChem		Phospho Site
RefSeq		
UniProt		

- Sample to Insight -

Data upload format examples

ID (required)	Measurements (recommended)		imended)	Additional Observations (optional)		
Gene ID	Log2Ratio	p-value	Max RPKM	Log2Ratio	p-value	Max RPKM
NM_130786	0.14	8.68E-01	2931.69	-0.01	9.82E-01	2117.73
NR_015380	-0.99	2.24E-01	1649.26	0.12	8.64E-01	14076.24
NM_138932	-0.02	9.83E-01	1.67	-1.62	1.46E-01	31.85
NM_014576	-0.02	9.85E-01	1.77	0.12	8.25E-01	10491.96
NM_138933	0.02	9.79E-01	1.83	2.02	4.44E-01	14788.5
NM_000014	-4.79	1.02E-01	239.75	-0.57	1.09E-01	273101
NR_026971	-0.67	6.17E-01	213.79	0.36	4.87E-01	11876
NM_144670	-5.96	1.30E-01	610.64	-0.17	7.48E-01	3339.36
NM_001080438	-1.97	3.47E-01	3.91	0.7	1.02E-01	37787.69
NM_017436	-1.09	5.02E-01	6186.83	4.09	1.74E-01	6988.43
NM_016161	2.02	5.97E-02	149.85	1.04	1.18E-01	27563.08
NM_015665	-0.27	5.68E-01	13330.34	-0.5	6.92E-01	760.71
NM_023928	-1.42	1.03E-02	22828.45	-3.85	6.92E-02	14.43
R 07 4 35	·///1/16/	5.9~E-11	6.3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3/185-07	103-45-13

Identifier Examples	Directional Comparison	ns Other Measurements	Experimental Comparison Examples
Array IDs	Expr Ratio	Expr p-value	Mutant vs. wild-type
dbSNP	Expr Fold Change	Expr FDR (q-value)	Treated vs. untreated
Ensembl	Expr Log Ratio	Expr Intensity/RPKM/FPKM	Other case vs. control
Entrez Gene	Variant Loss/Gain	Variant ACMG Classification	
GenBank	Phospho Ratio	Phospho p-value	Additional time points
IPI	Phospho Fold Change	Phospho FDR (q-value)	Multiple dose responses
KEGG	Phospho Log Ratio	Phospho Intensity	Various cell lines
PubChem		Phospho Site	
RefSeq			
UniProt			

Data Upload

Best practices

- Calculate metrics outside of IPA (e.g. fold-change, p-value)
- Create an Excel spreadsheet or tab delimited file
 - □ Only 1 header row allowed
 - □ One column must have identifiers, preferably the left-most column
 - □ IPA will only look at the top worksheet in an Excel workbook
- Group related observations into a single spreadsheet if possible
 - □ Time course, drug concentration, cell lines, etc.
 - □ Can have up to 20 observations
- Specify array platform (chip) if possible
 - □ It is OK to use "Not specified/applicable"
- Pre-filter data at the lowest threshold that you have confidence in
 - □ For example, probe measurement p-value of .05 or other criteria
 - □ Further filter in Core Analysis

Verify the differential expression calculation

Ratio differential expression

 $\frac{Experimental\ Condition\ Exp.}{Control\ Exp.}$

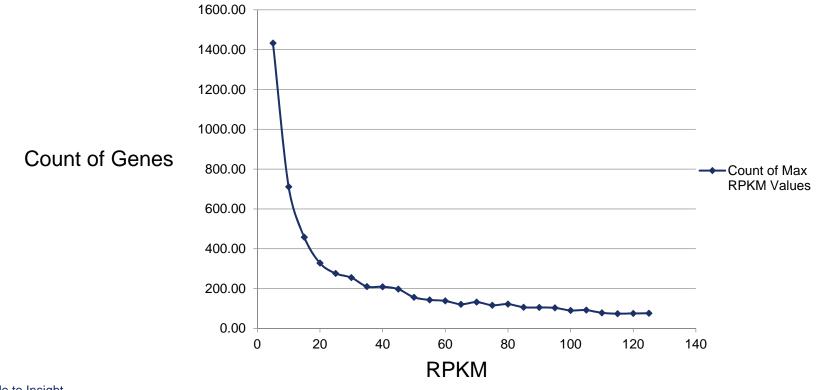
Log₂(ratio) differential expression (recommended)

 $Log_2\left(\frac{Experimental \ Condition \ Exp.}{Control \ Exp.}\right)$

- Fold Change
 - □ If increased differential expression

Experimental Condition Exp. Control Exp.

□ If decreased differential expression

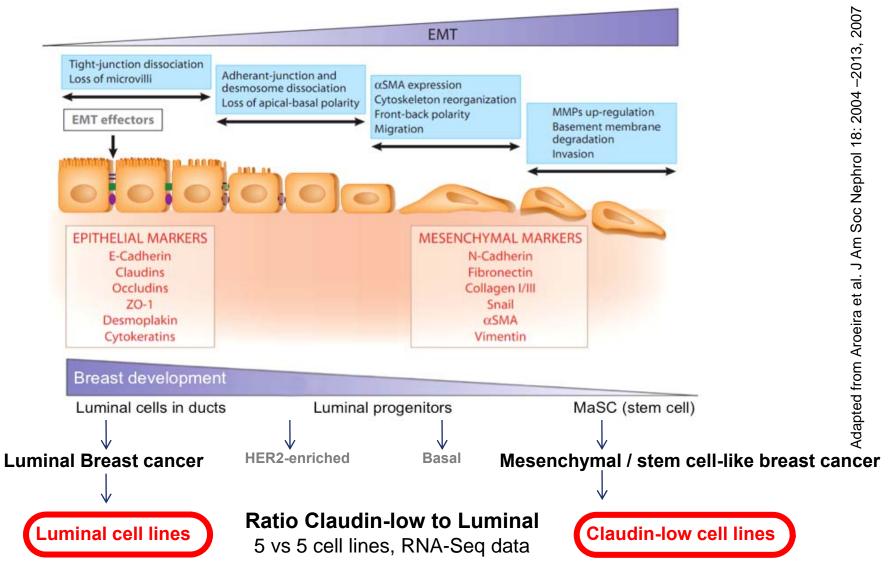

 $-1\left(rac{Control\ Exp.}{Experimental\ Condition\ Exp.}
ight)$

Fold change will never have values between -1 and 1

Filtering on absolute expression

- RNAseq measurements often result in many significant differential fold changes at low absolute transcript expression levels
- Including the maximum RPKM value of your experimental condition and control allows for later filtering on absolute expression value in addition to fold change and p-value

- 1. Launch Core Analysis: File > New > Core Analysis
- 2. Upload Data (gene expression, protein expression, metabolomics, etc.)
- 3. Set Core Analysis Settings and Run Analysis
- 4. Interpret Results


Data Upload and Core Analysis Set-up in IPA

Large Scale Data Analysis

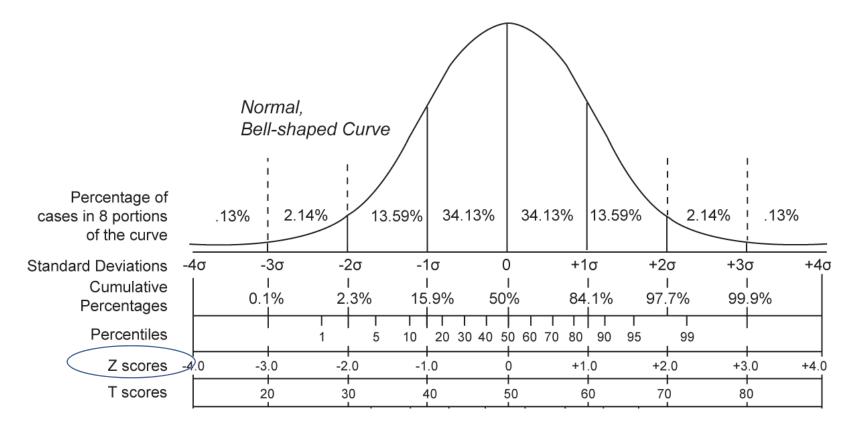
Epithelial to Mesenchymal Transition

IPA Core Analysis

- Pathway Analysis
 - Identifies enriched canonical pathways and scores directional changes based on gene expression
- Upstream Regulator Analysis
 - Predicts what regulators caused changes in gene expression and the directional state of regulator
- Diseases and Functions Analysis
 - Predicts effected biology (cellular processes, biological functions) based on gene expression and predicts directional change on that effect
- Regulator Effects
 - Models pathway interactions from predicted upstream regulators, through differentially expressed genes, to biological processes
- Networks
 - □ Predicts non-directional gene interaction map

Analyzing and Interpreting Results

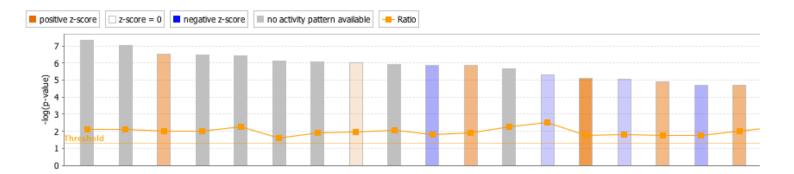
IPA calculates two distinct statistics as part of a core analysis


P-value:

- □ Calculated using a Right-Tailed Fisher's Exact Test
- Reflects the likelihood that the association or overlap between a set of significant molecules from your experiment and a given process/pathway/transcription neighborhood is due to random chance. The smaller the p-value the less likely that the association is random.
- □ The p-value does not consider the directional effect of one molecule on another, or the direction of change of molecules in the data set.
- Z-score:
 - Applied in some analysis types and provides predictions about upstream or downstream processes.
 - Takes into account the directional effect of one molecule on another molecule or on a process, and the direction of change of molecules in the data set.

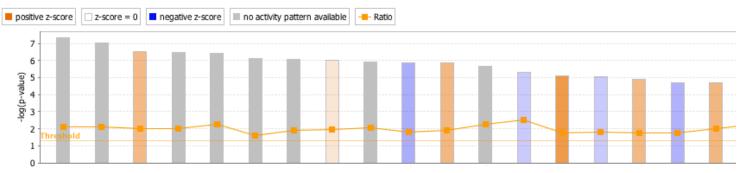
A set of genes chosen at random should be about equally likely to have an increasing or decreasing effect, thus, about 50% each direction, or a z=0.

A z-score represents the nonrandomness of directionality within a gene set

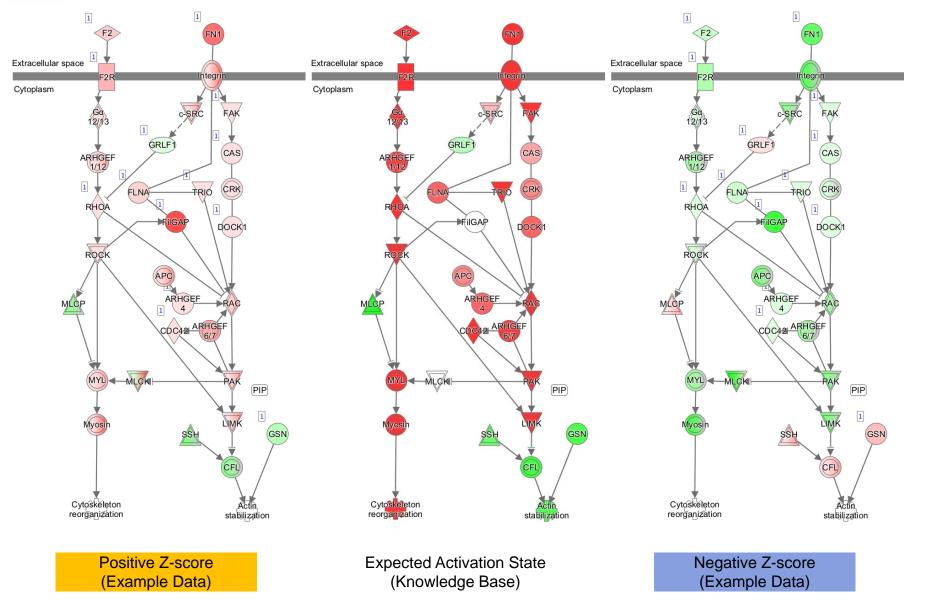


Analyzing Results Canonical Pathways

Pathway activity analysis

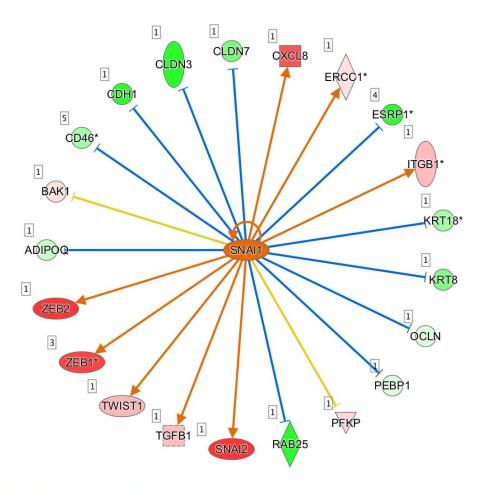

- Allows you to quickly determine if Canonical Pathways, including functional end-points, are increased or decreased based on differentially expressed genes or proteins in your data set
- Certain pathways within the knowledge base are directional (proceed from "A" to "Z")
- As part of pathway curation, a subset of genes are selected to be active
 - Allows the directionality of other genes to be predicted
 - Result defines an "activated" state for a given pathway
- Z-scores are calculated based on the data set's correlation with the activated state

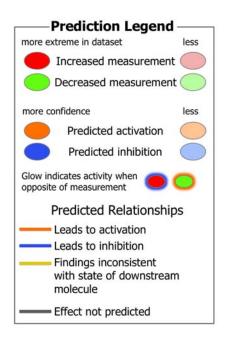
Pathway activity analysis


Allows you to quickly determine if Canonical Pathways, including functional end-points, are increased or decreased based on differentially expressed genes or proteins in your data set

- Certain pathways within the knowledge base are directional (proceed from "A" to "Z")
- Defining the "activated" state of a directional pathway
 - □ As part of the pathway curation, experts select a subset of genes within a pathway to be active, allowing the directionality of other genes to be predicted
- Z-scores are calculated based on the data set's correlation with the activated state
 - □ Gray bar no prediction can be made (pathway currently ineligible for a prediction)
- The "Expected" column (in the table that is displayed when you select of one of the bar charts) indicates the state that gene is predicted to have if the pathway were activated.
 - □ Press the "A" key when viewing a pathway to overlay expected activation state

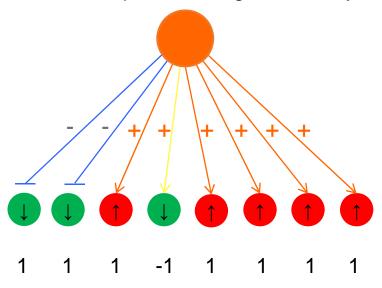
Pathway Activity Analysis




Analyzing Results Upstream Regulators

IPA Upstream Regulator Analysis

Directional Effects: Molecule Activity Predictor Examine Expression Relationship Consistency



© 2000-2017 QIAGEN. All rights reserved.

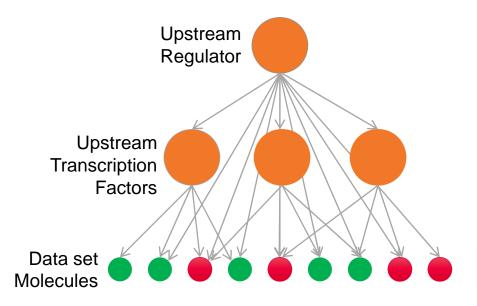
IPA Upstream Regulator Analysis

- ← Every possible TF & Upstream Regulator in the Ingenuity Knowledge Base is analyzed
- ← Literature-based effect TF/UR has on downstream genes
- ← Differential Gene Expression (Uploaded Data)
- Predicted activation state of TF/UR:
 1 = Consistent with activation of UR
 - -1 = Consistent with inhibition of UR

$$z = \frac{x}{\sigma_x} = \frac{\sum_i x_i}{\sqrt{N}} = \frac{N_+ - N_-}{\sqrt{N}} = (7-1)/\sqrt{8} = 2.12 \text{ (= predicted activation)}$$

- z-score is a statistical measure of the match between expected relationship direction and observed gene expression
- z-score > 2 or < -2 is considered significant

Note that the actual z-score is weighted by the underlying findings, the relationship bias, and data set bias

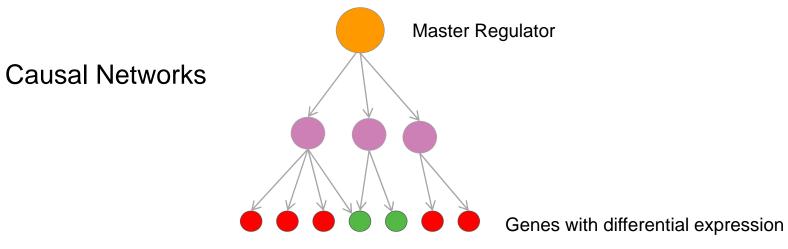

Sample to Insight

IPA Mechanistic Networks

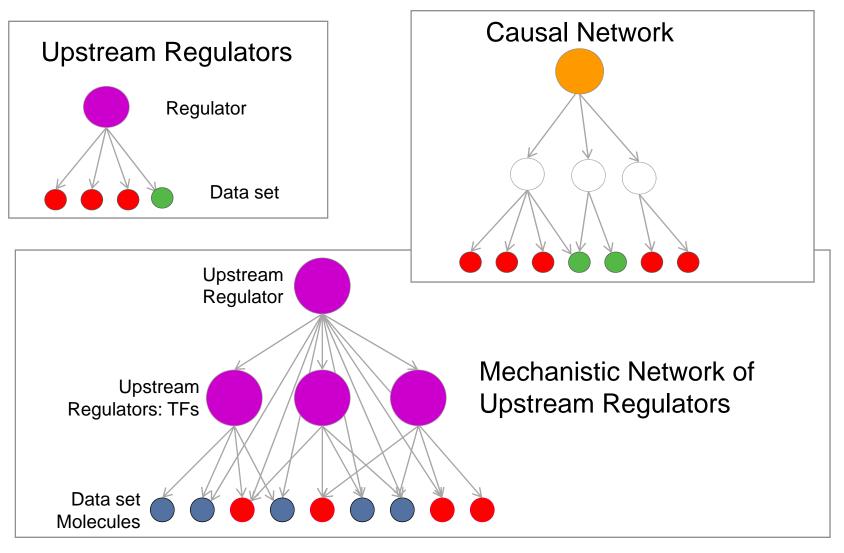
Goal: To discover plausible sets of connected upstream regulators that can work together to elicit the gene expression changes observed in a data set

How: Take IPA Upstream Regulator results and computationally seek pairs of regulators predicted to affect the expression of a similar set of genes. Repeat to build a network:

How might the upstream molecule drive the observed expression changes?


ummary \ Canonical Pathwa Ipstream Regulators \ Caus	ys \Upstream Analysis \Disease al Networks \	es & Functions \ Regulator Effect	S \ Networks \ Lists \ My Pathwa	iys \ Molecules \			
ADD TO MY PATHWAY ADD TO MY LIST DISPLAY AS NETWORK CUSTOMIZE TABLE MECHANISTIC NETWORKS 🔊 🚽 🖉 p-value of over 2.01E-16 - 3.95E-06 (p1 of 26) 🗸 CC 😰 🕽 More Info							
pstream Regulator 🛛 🔽 🖻	Expr Log Ratio	Molecule Type	Predicted Activation State	Activation z-score	📐 p-value of overlap 🛛 🗵	Target molecules in d 🝸 🗵	Mechanistic Network
GFB1	† 3.000	growth factor	Activated	3.592	2.01E-16	↑ABCE1, ↑ABCF1,all 330	1066 (19)
iR1	↓ -12.090	ligand-dependent nuclear r		-0.204	2.53E-15	+ABCA3, +ABLIM1,all 268	936 (18)
ta-estradiol		chemical - endogenous ma		-0.775	3.96E-15	◆ABCA3, ◆ABLIM1,all 345	1111 (19)
BB2	↓ -4.440	kinase		0.360	2.69E-12	↑ABL1, ↑ACAA2,all 148	800 (19)
trogen receptor		group	Inhibited	-5.346	3.00E-12	+ABCG1, +ADIPOQ,all 71	925 (17)
с	† 0.890	transcription regulator		1.849	2.79E-11	+ABCA2, +ABCA7,all 213	955 (10)
53	† 2.390	transcription regulator		-0.634	6.45E-10	+ABAT, +ABCB4,all 263	1003 (22)
r5	+-1.030	other		-1.053	1.18E-09	↓ABLIM1, ↑ACAT2,al 74	
N	↑ 2.440	cytokine	Activated	2.416	1.98E-09	↑ABCC4, ↓ABCC8,711119	971 (19)
					3 315 00	↑ABL1. ↑ACTB. ↑all 142	824 (14)
	↑ 4.400	ligand-dependent nuclear r		-1.210	estrogen receptor	+ABL1, +ACTB, +	024 (14)
Hypoth visualiz	esis generat			-1.210		TABLE, FACTO, L.P. all 142	024 (14)

© 2000-2017 QIAGEN. All rights reserved.

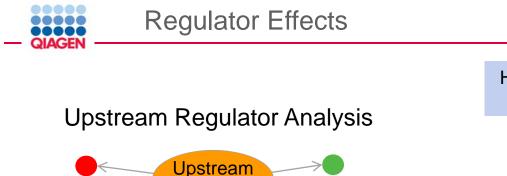

Advanced Analytics

- Alternate method of predicting upstream regulators based on causal relationships and allowing multiple interaction steps to gene expression changes
- Identify potential novel master-regulators of your gene expression by creating pathways of literature-based relationships
- Expands predictions to include indirect upstream regulators not in mechanistic networks

Advanced Analytics: Causal Network Analysis

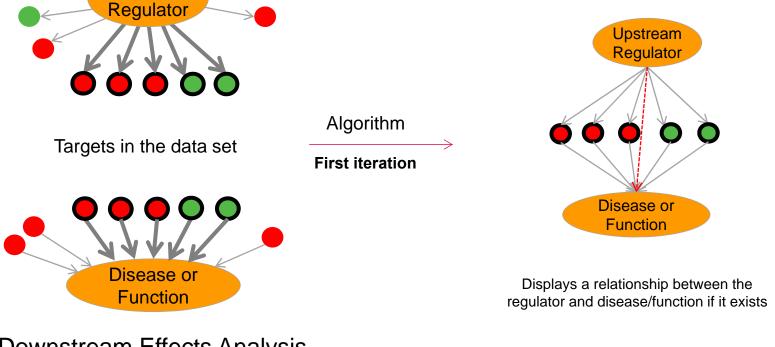
- Sample to Insight

Turning on Causal Networks (with Advanced Analytics)


DG1

Creat	e Core Analysis - [analysis : E2 of MCF7	P05.xls]							
	General Settings	eneral Settings Cenerate the following Networks (increases analysis time)							
	Networks Interaction & Causa	✓ Interaction networks							
	Node Types	Include endogenous chemicals Molecules per network Networks per analysis							
	Data Sources All	Genes are always included 35 25 25 25 35							
	Confidence Experimentally Ob	Score master regulators for relationships to diseases, functions, genes, or chemicals (max 50)							
	Species All	Score using causal paths only							
	Tissues & Cell Lines All	ADD							
	Mutation All	REMOVE							
	ADVANCED SAVE AS DEFAULTS								
S	et Cutoffs								
E	xpression Value Type Cutoff Ran	ige Focus On							
_	Exp Fold Change -22.7434 to 25.1208 Both Up/Downregulated V RECALCULATE 9574 analysis-ready molecules across observations								
	Exp p-value 0.0	to 0.05							
Pr	Preview Dataset E2 of MCF7 P05.xls Observation: Hr12FC (4532)								
h	Analysis-Ready (4532) \ Mapped IDs (13	871) \ Unmapped IDs (1496) \ All IDs (15367) \							

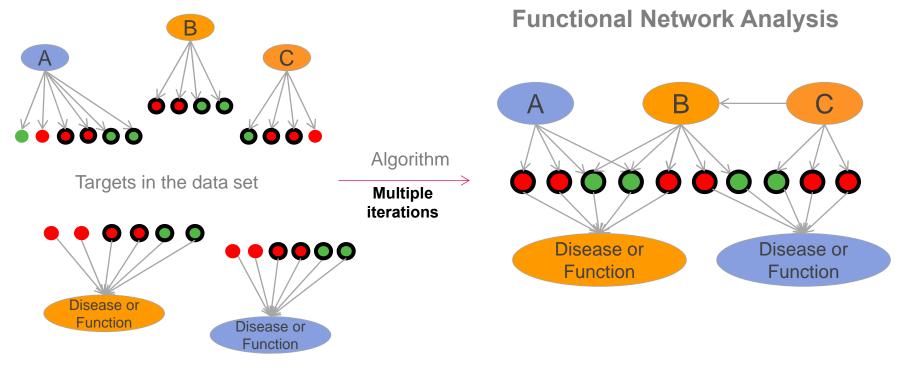
Add slide and move to training slide deck Darryl Gietzen, 3/25/2016 DG1



Analyzing Results Regulator Effects

Hypotheses for how activated or inhibited upstream regulators cause downstream effects on biology

Simplest Regulator Effects result


Downstream Effects Analysis

Causally consistent networks score higher

The algorithm runs iteratively to merge additional regulators with diseases and functions

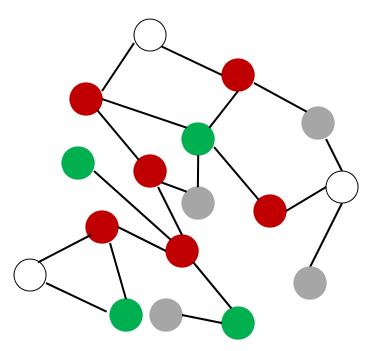
Upstream Regulator Analysis

Downstream Effects Analysis

Analyzing Results Networks

- To show as many interactions between user-specified molecules in a given data set and how they might work together at the molecular level
- Highly-interconnected networks are likely to represent significant biological function

- Networks are assembled based on gene/molecule connectivity with other gene/molecules.
 - Assumption: the more connected a gene/molecule, the more influence it has and the more "important" it is.
- Networks are assembled using decreasingly connected molecules from your data set.
- Genes/molecules from the Knowledge Base may be added to the network to fill or join areas lacking connectivity.
- □ A maximum of 35, 70, or 140 genes/molecules can comprise a network based on parameter settings.
- □ Networks are annotated with high-level functional categories.


Focus molecules are "seeds"

Focus molecules with the most interactions to other focus molecules are then connected together to form a network

Non-focus molecules from the data set are then added

Molecules from the Ingenuitys KB are added

Resulting Networks are scored and then sorted based on the score

