Introduction to Parallel
Computing

September 2018

Mike Jarsulic

Introduction

So Far...

mm CPUHours __Support Tcket

2012 1.2M

2013 71 * 1.9M 141
2014 84 739K 5.3M 391
2015 125 1.5M 5.2M 372
2016 153 1.6M 6.1M 363
2017 256 4.8M 14.7M 759
2018 296 3.0M 8.8M 631

TOTAL * 11.7M 40.2M 2657

However...

The BSD research community does not understand how to utilize resource
properly
Example:

* August 1st, 2018

* 1021 coresin use

* 39 jobs had requested a total of 358 cores

* All 39 jobs were single core jobs

* Thus, 319 cores were dedicated, but idle

My takeaways:

* The BSD research community does not really understand parallel computing!
* | have not done a good of training the BSD research community in this area!

Office Hours

Held every Tuesday and Thursday at Peck Pavilion N161
Users come in to work one-on-one to better utilize our HPC resource:

Three common questions on parallel computing:
1. Is this a worthwhile skill to learn? Aren't single processor systems fast
enough and always improving?
2. Why can't processor manufacturers just make faster processors?

3. Will you write me a program that will automatically convert my serial
application into a parallel application?

Obligatory Cost per Genome Slide

Moore's Law

National Human Genome
Research Institute

genome.gov/sequencingcosts

o e e e i

20012002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Motivation

Goals (of this presentation)

Understand the basic terminology found in parallel computing
Recognize the different types of parallel architectures
Learn how parallel performance is measured

Gain a high-level understanding to the different paradigms in parallel
programming and what libraries are available to implement those
paradigms

Please note that you will not be a parallel programming rock star
after this three hour introduction

Overall Goals

Hopefully, there will be enough interest after this presentation to
support a workshop series on parallel computing

Possible topics for workshops are:
 Scientific Programming
* Parameterization

OpenMP

MPI

CUDA

OpenACC

Today's Outline

Terminology

Parallel Architectures

Measuring Parallel Performance
Embarrassingly Parallel Workflows
Shared Memory

Distributed Memory

Vectorization

Hybrid Computing

A Note on Sources

Presentation given at SC17 by Stout and Jablonowski from the University c
Michigan

Introduction to Parallel Computing 2nd Edition by Grama, Gupta, et al.
Introduction to Parallel Programming by Pacheco

Using OpenMP by Chapman, Jost, and Van Der Pas

Using MPI by Gropp, Lusk, Skjellum

Advanced MPI by Gropp, Hoefler, et al.

CUDA for Engineers by Storti and Yurtoglu

CUDA by Example by Sanders and Kandrot

Parallel Programming with OpenACC by Farber

The LLNL OpenMP and MPI tutorials

A Note on Format

Today's Seminar will be recorded for a ITM/CTSA grant
* Questions
 Whiteboard
* Swearing

Terminology

Caveats

There are no standardized definitions for terms in parallel computing

thus resources outside of this presentation may use the terms in a
different way

Many algorithms or software applications that you will find in the rea
world do not fall neatly into the categories mentioned in this

presentation since they blend approaches in ways that difficult to
categorize.

Basic Terminology

Parallel Computing — solving a problem in which multiple tasks cooperate
closely and make simultaneous use of multiple processors

Embarrassingly Parallel — solving many similar, independent tasks;
parameterization

Multiprocessor — multiple processors (cores) on a single chip

Symmetric Multiprocessing (SMP) - multiple processors sharing a single

address space, OS instance, storage, etc. All processors are treated equally
by the OS

UMA - Uniform Memory Access; all processors share the memory space
uniformly

NUMA — Non-Uniform Memory Access; memory access time depends on
the location of the memory relative to the processor

More Basic Terminology

Cluster Computing — A parallel system consisting of a combination of
commodity units (processors or SMPs)

Capacity Cluster — A cluster designed to run a variety types of
problems regardless of the size; the goal is to perform as much
research as possible

Capability Cluster — The fastest, largest machines designed to solve
large problems; the goal is to demonstrate capability of the parallel
system

High Performance Computing — Solving large problems via a cluster
of computers that consist of fast networks and massive storage

Even More Basic Terminology

Instruction-Level Parallelism (ILP) - Improves processor performance
by having multiple processor components simultaneously executing

instructions

Pipelining — Breaking a task into steps performed by different
processors with inputs streaming through, much like an assembly line

Superscalar Execution - The ability for a processor to execute more
than one instruction during a clock cycle by simultaneously
dispatching multiple instructions to different execution units on the

Processor

Cache Coherence - Synchronization between local caches for each
processor

Crash Simulation Example

Simplified model based on a crash simulation for the Ford Motor
Company

Illustrates various aspects common to many simulations and
applications

This example was provided by Q. Stout and C. Jablonowski of the
University of Michigan

Finite Element Representation

Car is modeled by a triangulated surface (elements)

The simulation models the movement of the elements, incorporating
the forces on the elements to determine their new position

In each time step, the movement of each element depends on its
interaction with the other elements to which it is physically adjacent

In a crash, elements may end up touching that were not touching
initially

The state of an element is its location, velocity, and information such
as whether it is metal that is bending

Car

3

Serial Crash Simulation

For all elements
Read State(element), Properties(element), Neighbor _list(element)
For time=1 to end_of simulation

For element=1 to num_elements

Compute State(element) for next time step, based on the

previous state of the element and its neighbors and the
properties of the element

Simple Approach to Parallelization
(Concepts)

Distributed Memory — Parallel system based on processors linked
with a fast network; processors communicate via messages

Owner Computes — Distribute elements to processors; each
processor updates the elements which it contains

Single Program Multiple Data (SPMD) - All machines run the same
program on independent data; dominant form of parallel computing

Distributed Car

e
& B

Basic Parallel Version

Concurrently for all processors P
For all elements assigned to P

Read State(element), Properties(element), Neighbor-
list(element)

For time=1 to end_of_simulation
For element=1 to num_elements_in_P

Compute State (element) for next time step, based on
previous state of element and its neighbors, and on
properties of the element

Notes

Most of the code is the same as, or similar to, serial code.

High-level structure remains the same: a sequence of steps
* The sequence is a serial construct, but

* Now the steps are performed in parallel, but

e Calculations for individual elements are serial

Question:

* How does each processor keep track of adjacency info for neighbors in other
processors?

Distributed Car (ghost cells)

’ :
P \
\’--- \,I
N p
N p

[1
1
; M
; O
L] ‘
! P
p
\
N \
---:

Parallel Architectures

Flynn's Taxonomies

Hardware Classifications
{S,M}I{S,M}D

Single Instruction (SI) - System in which all processors execute the same
instruction

Multiple Instruction (MI) - System in which different processors may
execute different instructions

Single Data (SD) - System in which all processors operate on the same dat:

Multiple Data (MD) - System in which different processors may operate or
different data

M. J. Flynn. Some computer organizations and their effectiveness. |IEEE
Transactions on Computers, C-21(9):948-960, 1972.

Flynn's Taxonomies

SISD — Classic von Neumann architecture; serial computer

MIMD — Collections of autonomous processors that can execute

multiple independent programs; each of which can have its own data
stream

SIMD — Data is divided among the processors and each data item is

subjected to the same sequence of instructions; GPUs, Advanced
Vector Extensions (AVX)

MISD — Very rare; systolic arrays; smart phones carried by
Chupacabras

CRAY-1 Vector Machine (1976)

R W P
NS e ie
A A, Al

URIDREE] FPY)
B e e z (s 2N
DA ST L1 kL RRARAAIARPARERENERN

SR PRy 1y 30025

o R TR AU R R AR RSB SR RE R R
: p (o
TR R B F R WP RN E R E R L)

)
W {RRAT

Vector Machines Today

Software Taxonomies

Data Parallel (SIMD)

* Parallelism that is a result of identical operations being applied concurrently
on different data items; e.g., many matrix algorithms

* Difficult to apply to complex problems

Single Program, Multiple Data (SPMD)

* A single application is run across multiple processes/threads on a MIMD
architecture

* Most processes execute the same code but do not work in lock-step
* Dominant form of parallel programming

Four summations (instructions)

a | +
b | +
c | +
d | +

SISD vs. SIMD

23

2b

2C

2d

VS.

SIMD one summation (instruction)

23

2b

2C

2d

MIMD Architectures (Shared Memory)

Uniform Memory Access (UMA) Non-Uniform Memory Access (NUMA

|| Bus Interconnect ||

More MIMD Architectures

Distributed Memory Hybrid Memory

Snsm =m sm

Shared Memory (SM)

Attributes:
* Global memory space
e Each processor will utilize it's own cache for a portion of global memory;
consistency of the cache is maintained by hardware
Advantages:
e User-friendly programming techniques (OpenMP and OpenACC)
* Low latency for data sharing between tasks

Disadvantages:
* Global memory space-to-CPU path may be a bottleneck
* Non-Uniform Memory Access
* Programmer responsible for synchronization

Distributed Memory (DM)

Attributes:
* Memory is shared amongst processors through message passing

Advantages:
* Memory scales based on the number of processors
* Access to a processor's own memory is fast
* Cost effective

Disadvantages:

* Error prone; programmers are responsible for the details of the
communication

 Complex data structures may be difficult to distribute

Hardware/Software Models

Software and hardware models do not need to match

DM software on SM hardware:

* Message Passing Interface (MPI) - designed for DM Hardware but available o
SM systems

SM software on DM hardware
 Remote Memory Access (RMA) included within MPI-3

* Partitioned Global Address Space (PGAS) languages
e Unified Parallel C (extension to ISO C 99)
e Coarray Fortran (Fortran 2008)

Difficulties

Serialization causes bottlenecks
Workload is not distributed
Debugging is hard

Serial approach doesn't parallelize

Parallel Performance

Definitions

SerialTime(n) - Time for a serial program to solve a problem with an input
of size n

ParallelTime(n,p) - Time for a parallel program to solve the same problem
with an input size of n using p processors

SerialTime(n) < ParallelTime(n,1)
Speedup(n,p) = SerialTime(n) / ParallelTime(n,p)

Work(n,p) = p * ParallelTime(n,p)
Efficiency(n,p) = SerialTime(n) / [p * ParallelTime(n,p)]

Definitions

Expectations:
e 0<Speedup<p
* SerialWork < ParallelWork < oo
* O < Efficiency <1

Linear Speedup: Speedup = p, given some restriction on the
relationship between n and p

In The Real World

occasional

T C O DODOT W!W

processors

Superlinear Speedup

Superlinear Speedup: Speedup > p, thus Efficiency > 1

Why?
* Parallel computer has p times as much RAM so a higher fraction of program
memory is in RAM instead of disk.

e Parallel program used a different algorithm which was not possible with the
serial program.

Amdahl's Law

et f be the fraction of time spent on serial operations
et ParallelOps =1 — f and assume linear speedup

For p processors:
* ParallelTime(p) = SerialTime(p) * [f + (ParallelOps/p)]
* Speedup(p) <1/ (f + ParallelOps/p)

Thus, Speedup(p) < 1/f, no matter the number of processors used

Maximum Possible Performance

ALY kD A (S?/ Q)b‘ \rL% Qf_)@ 6\‘1\6”&

Processors

Efficiency

1.2

0.8

e
AN N

0.6

0.4}

0.21- = =0.001
A 1=0.01

0.0 | | | | | | | ® f=0-1

A

LRI G N SR\ 2

Processors

Pessimistic Interpretation

Amdahls Law

serial serial
perfect perfect perfect
parallel parallel parallel
=g | work work work

work Iworkl work

_work J© (L work] (_work J

neighbor neighbor global
comm comm

New Work

Optimistic Interpretation

We should be more optimistic than Amdahl's Law because:
* Algorithms with much smaller values of f
* More time spent in RAM than disk

* Time spentin fis a decreasing fraction of the total time as problem size
Increases

Common Program Structure

Serial, time grows slowly with n

Parallelizable loop, grows with n

Serial. fixed time

Parallelizable loop within loop,
time grows very rapidly with n

Serial, time grows slowly with n

Scaling Strategy

Increase n as p increases
 Amdahl considered strong scaling where n is fixed

Utilize weak scaling
 The amount of data per processor is fixed
* Efficiency can remain high if communication does not increase excessively

Embarrassingly Parallel Jobs

Parameterization

Requirements
* Independent tasks
 Common applications
* One job submission per task

Techniques
* Parameter sweeps (modify parameters mathematically for each task)
* List-driven analysis (modify parameters based on a list of values)

Example: List-Driven Analysis

Problem: Calculate the theoretical performance for the CRI HPC
clusters (historically)

Rpeak = Nodes * CoresPerNodes™* ClockSpeed * InstructPerCycle

m CoresPerNode ClockSpeed InstructPerCycIe

ibicluster 2.66e09
tarbell 40 64 2.20e09 8
gardner 126 28 2.00e09 16

Base

'PBS —N Rpeak.@Cluster
PBS —| nodes=1:ppn=1
PBS —| mem=1gb
PBS —| walltime=20:00

/rpeak -n @Nodes —c @CoresPerNode \
—s @ClockSpeed -i @InstructPerCycle

Shared Memory Parallelism

Shared Memory

All processors can directly access all the memory in the system
(though access times may be different due to NUMA)

Software portability — Applications can be developed on serial
machines and run on parallel machines without any changes

Latency Hiding — Ability to mask the access latency for memory
access, I/0O, and communications

Scheduling— Supports system-level dynamic mapping of tasks to
processors

Ease of programming — Significantly easier to program (in my opinion
using a shared memory model over a distributed memory model

Parallelization Techniques: pthreads

POSIX threads

Standard threading implementation for UNIX-like operating systems
(Linux, Mac OS X)

Library that can be linked with C programs
Some compilers include a Fortran version of pthreads

Knowledge of pthreads can easily be transferred to programming
other widely used threading specifications (e.g., Java threads)

Matrix-Vector Multiplication (pthreads)

include <stdio.h>
include <stdlib.h>
include <pthread.h>

* Global variable: accessible to all threads */
1t thread_count;

oid* Pth_mat_vect(void* rank); /* Thread function */

1t main(int argc, char* ar%v[]
long thread; ong in case of a 64-bit system */

pthread t* thread handles;

* Get number of threads from the command line */
nread_count = strtol(argv[1], NULL, 10);

aread_handles = malloc(thread_count*sizeof(pthread_t));

Matrix-Vector Multiplication (pthreads)

* Create a thread for each rank */
or (thread=0; thread < thread count; thread++)
pthread create(&thread handles[thread], NULL,
Pth_mat_vect, (void*) thread);

* Join the results from each thread */
or (thread=0; thread < thread_count; thread++)
pthread join(thread handles[thread], NULL);

ree(thread _handles);

eturn O;
/* main */

Matrix-Vector Multiplication (pthreads)

oid* Pth_mat_vect(void™ rank) {
long my_rank = (long) rank;
inti, j;
int local m = m/thread_count;
int my_first_ row = my _rank * local m;
int my_last_row = (my_rank + 1) * local_m —1;

for (i = my_first_row; i <= my_last_row; i++) {
[i] = 0.0;
or (j=0;j<n;j++)

} ylil +2 AT

return NULL;
/* Pth_mat_vect */

Parallelization Techniques: OpenMP

OpenMP is sort of an HPC standard for shared memory programming

OpenMP version 4.5 released in 2015 and includes accelerator
support as an advanced feature

API for thread-based parallelism
Explicit programming model, compiler interprets directives

Based on a combination of compiler directives, library routines, and
environment variables

Uses the fork-join model of parallel execution
Available in most Fortran and C compilers

OpenMP Goals

Standardization: standard among all shared memory architectures
and hardware platforms

Lean: simple and limited set of compiler directives for shared memor
programming. Often significant performance gains using just 4-6
directives in complex applications.

Ease of use: supports incremental parallelization of a serial program,
not an all-or-nothing approach.

Portability: supports Fortran, C, and C++

OpenMP Building Blocks

Compiler Directives (embedded in code)
* Parallel regions (PARALLEL)
* Parallel loops (PARALLEL DO)
* Parallel workshare (PARALLEL WORKSHARE)
* Parallel sections (PARALLEL SECTIONS)
* Parallel tasks (PARALLEL TASK)
 Serial sections (SINGLE)
* Synchronization (BARRIER, CRITICAL, ATOMIC, ...)
* Data structures (PRIVATE, SHARED, REDUCTION)

Run-time library routines (called in code)
* OMP_SET_NUM_THREADS
* OMP_GET_NUM_THREADS

UNIX Environment Variables (set before program execution)
« OMP_NUM_THREADS

Fork-Join Model

Parallel execution is achieved by generating threads which are
executed in parallel

Master thread executes in serial until the first parallel region is
encountered

Fork — The master thread created a team of threads which are
executed in parallel

Join —When the team members complete the work, they synchronize
and terminate. The master thread continues sequentially.

Fork-Join Model

Parallel Task | Parallel Task Il Parallel Task Ill

e

Master Thread
Parallel Task | Parallel Task Il Parallel Task Il
Master Thread -).
e RERPE el |

Work-Sharing Constructs

DO/for loop
WORKSHARE

¢ master thread ¢ master thread ¢

SECTIONS SINGLE

Fork Fork Fork
DO/WORKSHARE team ﬁ team
Py i V Ly
Join Join Join

¢ master thread ‘ master thread ¢

Barriers

Barriers may be needed for
correctness

Synchronization degrades Barrier Region
performance

time

OpenMP Notation

OpenMP recognizes the following compiler directives that start with:
* ISOMP (in Fortran)
e #fpragma omp (in C/C++)

Parallel Loops

Each thread executes part of the loop

The number of iterations is statically assigned to the threads upon
entry to the loop

Number of iterations cannot be changed during executions
Implicit BARRIER at the end of the loop
High efficiency

Parallel Loop Example (Fortran)

SOMP PARALLEL
SOMP DO
)0i=1,n

a(i) = b(i) + c(i)
ND DO
SOMP END DO

SOMP END PARALLEL

Parallel Sections

Multiple independent sections can be executed concurrently by
separate threads

Each parallel section is assigned to a specific thread which executes
the work from start to finish

Implict BARRIER at the end of each SECTION

Nested parallel sections are possible, but impractical

Parallel Sections Example (Fortran)

SOMP PARALLEL SECTIONS

SOMP SECTION
)Oi=1,n

a(i) = b(i) + c(i)
ND DO

SOMP SECTION
)0i=1,k

d(i) = e(i) + f(i)
ND DO

SOMP END PARALLEL SECTIONS

Parallel Tasks and Workshares

Parallel Tasks
* Unstructured parallelism

* Irregular problems like:
e Recursive algorithms
* Unbounded loops

Parallel Workshares

* Fortran only
* Used to parallelize assignments

Matrix-Vector Multiplication: OpenMP C

include <stdio.h>
include <stdlib.h>

oid Omp_mat_vect(int m, int n, double * restrict a,
double * restrict b, double * restrict c) {
inti,j;

pragma omp parallel for default (none) \
shared(m, n, a, b, c) private (i, j)
for (i=0;i<m;i++)
ali] = 0.0;
for (j =0; L< n; j++
ali] += bli*ra]] * clj]
} /* End of omp parallel for */

Matrix-Vector Multiplication: OpenMP
Fortran

sbroutine Pth_mat_vect(m, n, a, b, c)
nplicit none

teger(kind=4) :: m, n
al(kind=8) :: a(1:m), b(1:m, 1:n), c(1:n)
teger :: i, |

>OMP PARALLEL DO DEFAULT(NONE) &
>OMP SHARED(m, n, a, b, c) PRIVATE(i, j)
doi=1m
a(i)=0.0
doj=1,n - .
a((? = a(i) + b(i, j) * c(j)
end do
end do

SOMP END PARALLEL DO

2turn
nd subroutine Pth_mat_vect

OpenMP Errors

Variable Scoping: Which are shared and which are private

Sequential I/O in a parallel region can lead to an unpredictable order

False sharing: two or more processors access different variables in
the same cache line (Performance)

Race Conditions
Deadlock

Summation Example

Vhat is with the following code wrong?

um = 0.0
SOMP PARALLEL DO

)Oi=1,n
sum = sum + a(i)

ND DO

S OMP END PARALLEL DO

Summation Example Correction

um = 0.0
SOMP PARALLEL DO REDUCTION(+,sum)

)0i=1,n
sum = sum + a(i)

ND DO

S OMP END PARALLEL DO

Distributed Memory Parallelism

Message Passing

Communication on distributed memory systems are a significant
aspect of performance and correctness

Messages are relatively slow, with startup times (latency) taking
thousands of cycles

Once message passing has started, the additional time per byte
(bandwidth) is relatively small

Performance on Gardner

Intel Xeon E5-2683 Processor (Haswell)

Processor speed: 2,000 cycles per microsecond (psec)

16 FLOPs/cycle: 32,000 FLOPs per psec

MPI message latency = ~2.5 psec or 80,000 FLOPs

MPI message bandwidth = ~7,000 bytes/usec = 4.57 FLOPs/byte

Reducing Latency

Reduce the number of messages by mapping communicating entities
onto the same processor

Combine messages having the same sender and destination

If processor A has data needed by processor B, have A send it to B,
rather than waiting for B to request it. Processor A should send as
soon as the data is ready, processor B should read it as late as
possible to increase the probability that the data has arrived

Other Issues With Message Passing

Network Congestion
Deadlock

* Blocking: a processor cannot proceed until the message is finished

* With blocking communication, you may reach a point where no processor ca
proceed

* Non-blocking communication: easiest way to prevent deadlock; processors
can send and proceed before receive is finished

Message Passing Interface (MPI)

International Standard

MPI1 1.0 released in 1994

Current version is 3.1 (June 2015)

MPI 4.0 standard in the works

Available on all parallel systems

Interfaces in C/C++ and Fortran

Bindings for MATLAB, Python, R, and Java

Works on both distributed memory and shared memory hardware
Hundreds of functions, but you will need ~6-10 to get started

MPI| Basics

Two common MPI functions:
 MPI_SEND() - to send a message
 MPI_RECV() - to receive a message

Function like write and read statements
Both are blocking operations

However, a system buffer is used that allows small messages to be
non-blocking, but large messages will be blocking

The system buffer is based on the MPIl implementation, not the
standard

Blocking communication may lead to deadlocks

Small Messages

Process 0

Local buffer

Process 1

Network

Local buffer :

Large Messages

Process 0

-,

Network

Process |

G

Deadlocks

Source Avoidance
Process 0 Process | Process 0 Process 1
Send (1) Send (0) Send (1) Recv (0)

Recv (1) Recv (0) Recv (1) Send (0)

Non-Blocking Communication

Non-Blocking operations
e MPI_ISEND()
« MPI_IRECV()
« MPI_WAIT()

The user can check for data at a later stage in the program without
waiting

e MPI_TEST()
Non-blocking operations will perform better than blocking operation:

Possible to overlap communication with computation

MPI Program Template

include "mpi.h"

* Initialize MPI */
AP|_Init(&argc, &argv);

* Allow each processor to determine its role */

1t num_processor, my_rank;
API_Comm_size(MPI_COMM_WORLD, &num_processor);
API_Comm_rank(MPI_COMM_WORLD, &my_rank);

* Send and receive some stuff here */

* Finalize */
AP|_Finalize()

MPI Summation

MPI Summation

* Send and receive some stuff here */
(my_rank == 0) {
sum = 0.0;
for (source=1; source < num_procs; source++) {
MPI_RECV(&value, 1, MPI_FLOAT, source, tag,
MPI_COMM_WORLD, &status);
sum += value;

}

Ise {
MPI_SEND(&value, 1, MPI_FLOAT, O, tag, MPI_COMM_WORLD);

A More Efficient Receive

In the previous example, rank O received the messages in order basec

on ranks.
Thus, if processor 2 was delayed, then processor 0 was also delayed

Make the following modification:

/API_RECV(&value, 1, MPI_FLOAT, MPI_ANY_SOURCE, tag,
MPI_COMM_WORLD, &status);

Now processor 0 can process messages as soon as they arrive

MPI Reduction

Like OpenMP, MPI also has reduction operations that can be used for
tasks such as summation

Reduction is a type of collective communication

API_REDUCE(&value, &sum, 1, MPI_FLOAT, MPI_SUM,
0, MPI_COMM_WORLD);

Reduction operations:
* MPI_SUM, MPI_MIN, MPI_MAX, MPI_PROD
« MPI_LAND, MPI_LOR

Collective Communication

Most frequently invoked MPI routines after send and receive

Improve clarity, run faster than send and receive, and reduce the
likelihood of making an error

Examples
* Broadcast (MPI_Bcast)
e Scatter (MPI_Scatter)
e Gather (MPIl_Gather)
* All Gather (MPI_Allgather)

Broadcast

MPI|_Bcast

Broadcasts a message from one task to all other tasks in communicator

count = 1;
source = 1;
MPI Bcast(&msg, count, MPI INT, source, MPI COMM WORLD) ;

task1 contains the message to be broadcast

task0 task1 task2 task3

7 <+—— msg (before)

7 7 7 7 | <«—— msg (after)

Scatter

MPI_Scatter

Sends data from one task to all other tasks in communicator

sendcnt = 1;
recvent = 1;
src = 1; task1 contains the data to be scattered

MPI Scatter(sendbuf, sendcnt, MPI_ INT
recvbuf, recvent, MPI INT
src, MPI_COMM WORLD) ;

task0 task1 task2 task3

<+—— sendbuf (before)

1 2 3 4 <«—— recvbuf (after)

Gather

MPI_Gather

Gathers data from all tasks in communicator to a single task

sendcnt = 1;
recvcent = 1;))
src = 1; message will be gathered into task1

MPI Gather(sendbuf, sendcnt, MPI INT
recvbuf, recvcnt, MPI INT
src, MPI_COMM WORLD) ;

task0 task1 task2 task3

1 2 3 4 <«—— sendbuf (before)

<+—— recvbuf (after)

All Gather

MPI_Allgather

Gathers data from all tasks and then distributes to all tasks in communicator
sendcnt = 1;
recvent = 1;
MPT Allgather (sendbuf, sendcnt, MPI INT
recvbuf, recvcnt, MPI INT
MPI COMM WORLD) ;

task0 task1 task2 task3
1 2 3 4 | «—— sendbuf (before)
1 1 1 1
2 2 2 2
< recvbuf (after)
3 3 3 3
4 4 4 4

MPI Data Types

Primitive data types (correspond to those found in the underlying
language)
* Fortran
* MPI_CHARACTER
* MPI_INTEGER

* MPI_REAL, MPI_DOUBLE_PRECISION
* MPI_LOGICAL

e C/C++ (include many more variants than Fortran)
MPI_CHAR

MPI_INT, MPI_UNSIGNED, MPI_LONG

MPI_FLOAT, MPI_DOUBLE

MPI_C_BOOL

MPI Data Types

Derived data types are also possible
* Vector — data separated by a constant stride
e Contiguous — data separated by a stride of 1
e Struct — mixed types
* Indexed — array of indices

MPI| Vector

MPI_ Type_vector

a[4][4]

count = 4; blocklength = 1; stride = 4;
MPI_Type_vector{count, blocklength, stride, MPI FLOAT,
&columntype);

1.0 3.0 4.0
5.0 7.0 8.0
9.0 11.0 12.0
130 15.0 16.0

MPI_Send(&a[0][1], 1, columntype, dest, tag, comm);

1element of
columntype

MPI| Contiguous

MPI_ Type_contiguous

count = 4;
MPI_Type_contiguous(count, MPI FLOAT, &rowtype);

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

13.0

14.0

15.0

16.0

MPI_Send(&a[2][0], 1, rowtype, dest, tag, comm);

1 element of
rowtype

MPI Struct

MPI_ Type_struct

typedef struct { float x, v, z, velocity; int n, type; } Particle;
Particle particles[NELEM];

MPI_Type extent{MPI FLOAT, &extent);
count = 2; oldtypes[0] = MPI FLOAT; oldtypes[1] = MPI INT

offsets[0] = 0; offsets[1] = 4 * extent;
blockcounts[0] = 4; blockcounts[1] = 2;

particlesf]NELEM]

NN

AN

MPI_Type_struct{count, blockcounts, offsets, oldtypes, &particletype);

MPI_Send(particles, NELEM, particletype, dest, tag, comm);

Sends entire (NELEM) array of particles, each particle being
comprised four floats and two integers.

MPI Indexed

MPI_ Type_indexed

count = 2; blocklengths[0] = 4; blocklengths[1] = 2;
displacements[0] = 5; displacements[1] = 12;

1.0 0110 0/16.0

a[16]

MPI_Type indexed(count, blocklengths, displacements, MPI FLOAT, &indextype);

MPI_Send(&a, 1, indextype, dest, tag, comm);

1 element of
indextype

MPI Synchronization

Implicit synchronization
* Blocking communication
* Collective communication

Explicit synchronization
* MPIl_Wait
* MPIl_Waitany
* MPI_Barrier

Remember, synchronization can hinder performance

Additional MPI Features

Virtual topologies

User-created communicators

User-specified derived data types

Parallel I/O

One-sided communication (MPI_Put, MPI_Get)
Non-blocking collective communication
Remote Memory Access

Vectorization

Accelerators

Principle: Split an operation into independent parts and execute the
parts concurrently in an accelerator (SIMD)

)O 1 =1, 1000
A(l) = B(I) + C(I)
ND DO

Accelerators like Graphics Processing Units are specialized for SIMD
operations

Popularity

In 2012, 13% of the performance share of the Top 500
Supercomputers was provided through accelerators

Today, the performance share for accelerators is ~¥38%

Trend: Build diverse computing platforms with multiprocessors, SMP
nodes, and accelerators

Caveat: Difficult to use heterogenous hardware effectively

Modern Accelerators

NVidia Volta Intel Xeon Phi Knight's Landing
7.5 TFLOPs double precision * 3 TFLOPs double precision
30 TFLOPs half precision e 72 cores (288 threads)
5120 cores * 16 GB RAM
16 GB RAM * 384 GB/s memory bandwidth
900 GB/s memory bandwidth * Includes both a scalar and a

vector unit

NVidia Architecture

SIMT: Single Instruction, Thesed

Multiple Thread (Similar to % S

SIMD)

Thread blocks are executed by a]

warp of 32 cores i D] swamaniemory

Performance is dependent on ando

memory alignment and — = |

eliminating shared memory === B o

access T Memory
|| s e |l

Programming GPUs

Low-Level Programming
* Proprietary — NVidia's CUDA
* Portable — OpenCL

High-Level Programming
* OpenACC
* OpenMP 4.5

* Allows for a single code base that may be compiled on both multicore and
GPUs

CUDA Matrix Multiplication

1t main(void) {
int *a, *b, *c; // CPU copies
int *dev_a, *dev_b, *dev_c; // GPU copies

/* Allocate memory on GPU */

arraysize = n*sizeof(int);

cudaMalloc((void**)\&dev_a, arraysize);
cudaMaIIocg &void**;\&dev_b, arraysize);
cudaMalloc((void**)\&dev_c, sizeof(in));

use malloc for a, b, c
initialize a, b

/* Move a and b to the GPU */
cudaMemcpy{dev_a, a, arraysize, cudaMemcpyHostToDev_ice));
cudaMemcpy(dev_b, b, arraysize, cudaMemcpyHosttoDevice

/* Launch GPU kernel */
dot <<< n/threads_per_block,threads_per_block >>>(dev_a,dev_b,dev_c);

’

/* Copy results back to CPU
cudaMemcpy(c, dev_c, sizeof(int), cudaMemcpyDeviceToHost)

return O;

CUDA Matrix Multiplication

global void dot(int *a, int *b, int *c) {
shared int temp[threads_per block];
int index = threadldx.x + blockldx.x + blockDim.x;

/* Convert warp index to global */
temp[threadldx.x] = a[index] * b[index];

/* Avoid race condition on sum within block */
_syncthreads();

if (threadldx.x ==0) {
int sum = 0;
for (inti=0; i< threads_per_block; i++)
sum += templi];

/* add to global sum */
atomicAdd(c, sum)

}

OpenACC and OpenMP

Share the same model of computation

Host-centric — host device offloads code regions and data to
accelerators

Device — has independent memory and multiple threads

Mapping clause — Defines the relationship between memory on the
host device and memory on the accelerator

OpenACC Matrix Multiplication

it main(int argc, char** argv) {
intn= atm#}argv 1]);

float *a = i oat ;mallocisueofiﬂoat; *n* n;°
float *b = (float *)malloc(sizeof(float) * n * n);
float *c = (float *)malloc(sizeof(float) * n * n);

#pragma icc data copyin(a[0:n*n], b[0:n*n]), copy(c[0:n*n]) {
inti,), k;

#pragma acc kernels
for(l—O i <n;i++)

0; <n j++) {
a| n+d_ float |+ j;
bli*n+j] = (float) i —;
cli*n+j] =0.0;

OpenACC Matrix Multiplication

#pragma acc kernels
for(i=0;i<n;i++){
for(j=0;j<n;j++) {
for (k =0; k < n; k++) {
ci*n+jl+=ali*n+k] *blk*n+j];
}
}
}
}

Speedup?

Some problems can achieve a speedup of 10x-100x by offloading
some of the work to a GPU (e.g. linpack, matrix multiplication)

In reality:
e Only a small fraction of applications can utilize a GPU effectively
* The average speedup of those applications is ~2x-4x

* Optimizing your code using multicore technologies is probably a better use o
your time

Problem Areas

Branching can cut your performance by 50% since instructions need
to be issued for both branches

Memory bandwidth on GPUs is poor
* Need to make sure your operands are used more than once
* For the NVidia Volta, all operands need to be used 67x to achieve peak FLOP:

Accelerator Trends

Intel has canceled Knight's Landing and Knight's Hill; future Xeon Phi statu:
is unknown

GPUs are becoming less rigidly SIMD and including better memory
bandwidth

More programmers moving from low-level programming like CUDA to
high-level directives

PGI Compiler was purchased by NVidia in 2013; cut support for OpenCL
OpenACC and OpenMP still have not merged

Efficiency of GPUs is still problematic and the programming model is a
moving target

New Motivation: Deep Learning

Hybrid Computing

Current Trend

Accelerator-based machines are grabbing the high rankings on the

Top 500, but clusters with standard cores are still most important
economically

Economics dictates distributed memory system of shared memory

boards with multicore commodity chips, perhaps with some form of
accelerator distributed sparingly

MPI+X

Conclusion

Topics for Possible Future Workshops

Scientific Computing (C++ or Fortran or Both)

Parallel Computing Theory (e.g., Load balancing, measuring performance)
Embarrassingly Parallel

pthreads

OpenMP

MPI

OpenACC

CUDA

Parallel Debugging/Profiling

