
Introduc)on to Parallel
Compu)ng

September	2018	
	

Mike	Jarsulic	

Introduc)on

So Far...

Year	 Users	 Jobs	 CPU	Hours	 Support	Tickets	

2012	 36	 *	 1.2M	 *	

2013	 71	 *	 1.9M	 141	

2014	 84	 739K	 5.3M	 391	

2015	 125	 1.5M	 5.2M	 372	

2016	 153	 1.6M	 6.1M	 363	

2017	 256	 4.8M	 14.7M	 759	

2018	 296	 3.0M	 8.8M	 631	

TOTAL	 *	 11.7M	 40.2M	 2657	

However...

•  The	BSD	research	community	does	not	understand	how	to	uClize	resources	
properly	
•  Example:	

•  August	1st,	2018	
•  1021	cores	in	use	
•  39	jobs	had	requested	a	total	of	358	cores	
•  All	39	jobs	were	single	core	jobs	
•  Thus,	319	cores	were	dedicated,	but	idle	

• My	takeaways:	
•  The	BSD	research	community	does	not	really	understand	parallel	compuCng!	
•  I	have	not	done	a	good	of	training	the	BSD	research	community	in	this	area!	

Office Hours

• Held	every	Tuesday	and	Thursday	at	Peck	Pavilion	N161	
• Users	come	in	to	work	one-on-one	to	beZer	uClize	our	HPC	resources	
•  Three	common	quesCons	on	parallel	compuCng:	

1.  Is	this	a	worthwhile	skill	to	learn?	Aren't	single	processor	systems	fast	
enough	and	always	improving?	

2.  Why	can't	processor	manufacturers	just	make	faster	processors?	
3.  Will	you	write	me	a	program	that	will	automaCcally	convert	my	serial	

applicaCon	into	a	parallel	applicaCon?	

Obligatory Cost per Genome Slide

Mo)va)on

Goals (of this presenta)on)

• Understand	the	basic	terminology	found	in	parallel	compuCng	
• Recognize	the	different	types	of	parallel	architectures	
•  Learn	how	parallel	performance	is	measured	
• Gain	a	high-level	understanding	to	the	different	paradigms	in	parallel	
programming	and	what	libraries	are	available	to	implement	those	
paradigms	

• Please	note	that	you	will	not	be	a	parallel	programming	rock	star	
acer	this	three	hour	introducCon	

Overall Goals

• Hopefully,	there	will	be	enough	interest	acer	this	presentaCon	to	
support	a	workshop	series	on	parallel	compuCng	
• Possible	topics	for	workshops	are:	
•  ScienCfic	Programming	
•  ParameterizaCon	
•  OpenMP	
•  MPI	
•  CUDA	
•  OpenACC	

Today's Outline

•  Terminology	
• Parallel	Architectures	
• Measuring	Parallel	Performance	
•  Embarrassingly	Parallel	Workflows	
•  Shared	Memory	
• Distributed	Memory	
• VectorizaCon	
• Hybrid	CompuCng	

A Note on Sources

•  PresentaCon	given	at	SC17	by	Stout	and	Jablonowski	from	the	University	of	
Michigan	
•  IntroducCon	to	Parallel	CompuCng	2nd	EdiCon	by	Grama,	Gupta,	et	al.	
•  IntroducCon	to	Parallel	Programming	by	Pacheco	
•  Using	OpenMP	by	Chapman,	Jost,	and	Van	Der	Pas	
•  Using	MPI	by	Gropp,	Lusk,	Skjellum	
•  Advanced	MPI	by	Gropp,	Hoefler,	et	al.	
•  CUDA	for	Engineers	by	StorC	and	Yurtoglu	
•  CUDA	by	Example	by	Sanders	and	Kandrot	
•  Parallel	Programming	with	OpenACC	by	Farber	
•  The	LLNL	OpenMP	and	MPI	tutorials	

A Note on Format

•  Today's	Seminar	will	be	recorded	for	a	ITM/CTSA	grant	
•  QuesCons	
• Whiteboard	
•  Swearing	

Terminology

Caveats

•  There	are	no	standardized	definiCons	for	terms	in	parallel	compuCng,	
thus	resources	outside	of	this	presentaCon	may	use	the	terms	in	a	
different	way	
• Many	algorithms	or	socware	applicaCons	that	you	will	find	in	the	real	
world	do	not	fall	neatly	into	the	categories	menConed	in	this	
presentaCon	since	they	blend	approaches	in	ways	that	difficult	to	
categorize.	

Basic Terminology

•  Parallel	CompuFng	–	solving	a	problem	in	which	mulCple	tasks	cooperate	
closely	and	make	simultaneous	use	of	mulCple	processors	
•  Embarrassingly	Parallel	–	solving	many	similar,	independent	tasks;	
parameterizaCon	
• MulFprocessor	–	mulCple	processors	(cores)	on	a	single	chip	
•  Symmetric	MulFprocessing	(SMP)	-	mulCple	processors	sharing	a	single	
address	space,	OS	instance,	storage,	etc.	All	processors	are	treated	equally	
by	the	OS	
•  UMA	–	Uniform	Memory	Access;	all	processors	share	the	memory	space	
uniformly	
•  NUMA	–	Non-Uniform	Memory	Access;	memory	access	Cme	depends	on	
the	locaCon	of	the	memory	relaCve	to	the	processor	

	

More Basic Terminology

• Cluster	CompuFng	–	A	parallel	system	consisCng	of	a	combinaCon	of	
commodity	units	(processors	or	SMPs)	
• Capacity	Cluster	–	A	cluster	designed	to	run	a	variety	types	of	
problems	regardless	of	the	size;	the	goal	is	to	perform	as	much	
research	as	possible	
• Capability	Cluster	–	The	fastest,	largest	machines	designed	to	solve	
large	problems;	the	goal	is	to	demonstrate	capability	of	the	parallel	
system	
• High	Performance	CompuFng	–	Solving	large	problems	via	a	cluster	
of	computers	that	consist	of	fast	networks	and	massive	storage	

Even More Basic Terminology

•  InstrucFon-Level	Parallelism	(ILP)	-	Improves	processor	performance	
by	having	mulCple	processor	components	simultaneously	execuCng	
instrucCons	
• Pipelining	–	Breaking	a	task	into	steps	performed	by	different	
processors	with	inputs	streaming	through,	much	like	an	assembly	line	
•  Superscalar	ExecuFon	-	The	ability	for	a	processor	to	execute	more	
than	one	instrucCon	during	a	clock	cycle	by	simultaneously	
dispatching	mulCple	instrucCons	to	different	execuCon	units	on	the	
processor	
• Cache	Coherence	-	SynchronizaCon	between	local	caches	for	each	
processor	

Crash Simula)on Example

•  Simplified	model	based	on	a	crash	simulaCon	for	the	Ford	Motor	
Company	
•  Illustrates	various	aspects	common	to	many	simulaCons	and	
applicaCons	
•  This	example	was	provided	by	Q.	Stout	and	C.	Jablonowski	of	the	
University	of	Michigan	

Finite Element Representa)on

• Car	is	modeled	by	a	triangulated	surface	(elements)	
•  The	simulaCon	models	the	movement	of	the	elements,	incorporaCng	
the	forces	on	the	elements	to	determine	their	new	posiCon	
•  In	each	Cme	step,	the	movement	of	each	element	depends	on	its	
interacCon	with	the	other	elements	to	which	it	is	physically	adjacent	
•  In	a	crash,	elements	may	end	up	touching	that	were	not	touching	
iniCally	
•  The	state	of	an	element	is	its	locaCon,	velocity,	and	informaCon	such	
as	whether	it	is	metal	that	is	bending	

Car

Serial Crash Simula)on

1.  For	all	elements	
2.  Read	State(element),	ProperCes(element),	Neighbor_list(element)	
3.  For	Cme=1	to	end_of_simulaCon	
4.  					For	element=1	to	num_elements	
5.  										Compute	State(element)	for	next	Cme	step,	based	on	the		

										previous	state	of	the	element	and	its	neighbors	and	the						
										properCes	of	the	element	

Simple Approach to Paralleliza)on
(Concepts)

• Distributed	Memory	–	Parallel	system	based	on	processors	linked	
with	a	fast	network;	processors	communicate	via	messages	
• Owner	Computes	–	Distribute	elements	to	processors;	each	
processor	updates	the	elements	which	it	contains	
•  Single	Program	MulFple	Data	(SPMD)	-	All	machines	run	the	same	
program	on	independent	data;	dominant	form	of	parallel	compuCng	

Distributed Car

Basic Parallel Version

Concurrently	for	all	processors	P	
1.  For	all	elements	assigned	to	P	
2.  					Read	State(element),	ProperCes(element),	Neighbor-	

					list(element)	
3.  										For	Cme=1	to	end_of_simulaCon	
4.  															For	element=1	to	num_elements_in_P	
5.  																				Compute	State	(element)	for	next	Cme	step,	based	on		

																				previous	state	of	element	and	its	neighbors,	and	on		
																				properCes	of	the	element	

Notes

• Most	of	the	code	is	the	same	as,	or	similar	to,	serial	code.	
• High-level	structure	remains	the	same:	a	sequence	of	steps	
•  The	sequence	is	a	serial	construct,	but	
•  Now	the	steps	are	performed	in	parallel,	but	
•  CalculaCons	for	individual	elements	are	serial	

• QuesCon:	
•  How	does	each	processor	keep	track	of	adjacency	info	for	neighbors	in	other	
processors?	

Distributed Car (ghost cells)

Parallel Architectures

Flynn's Taxonomies

•  Hardware	ClassificaCons	
•  {	S,	M	}	I	{	S,	M	}	D		
•  Single	InstrucFon	(SI)	-	System	in	which	all	processors	execute	the	same	
instrucCon	
• MulFple	InstrucFon	(MI)	-	System	in	which	different	processors	may	
execute	different	instrucCons	
•  Single	Data	(SD)	-	System	in	which	all	processors	operate	on	the	same	data	
• MulFple	Data	(MD)	-	System	in	which	different	processors	may	operate	on	
different	data	
• M.	J.	Flynn.	Some	computer	organizaCons	and	their	effecCveness.	IEEE	
TransacCons	on	Computers,	C-21(9):948–960,	1972.	

	

Flynn's Taxonomies

•  SISD	–	Classic	von	Neumann	architecture;	serial	computer	
• MIMD	–	CollecCons	of	autonomous	processors	that	can	execute	
mulCple	independent	programs;	each	of	which	can	have	its	own	data	
stream	
•  SIMD	–	Data	is	divided	among	the	processors	and	each	data	item	is	
subjected	to	the	same	sequence	of	instrucCons;	GPUs,	Advanced	
Vector	Extensions	(AVX)	
• MISD	–	Very	rare;	systolic	arrays;	smart	phones	carried	by	
Chupacabras	

CRAY-1 Vector Machine (1976)

Vector Machines Today

SoWware Taxonomies

• Data	Parallel	(SIMD)	
•  Parallelism	that	is	a	result	of	idenCcal	operaCons	being	applied	concurrently	
on	different	data	items;	e.g.,	many	matrix	algorithms	
•  Difficult	to	apply	to	complex	problems	

•  Single	Program,	MulFple	Data	(SPMD)	
•  A	single	applicaCon	is	run	across	mulCple	processes/threads	on	a	MIMD	
architecture	
•  Most	processes	execute	the	same	code	but	do	not	work	in	lock-step	
•  Dominant	form	of	parallel	programming	

SISD vs. SIMD

MIMD Architectures (Shared Memory)

Uniform	Memory	Access	(UMA)	 Non-Uniform	Memory	Access	(NUMA)	

More MIMD Architectures

Distributed	Memory	 Hybrid	Memory	

Shared Memory (SM)

• AYributes:	
•  Global	memory	space	
•  Each	processor	will	uClize	it's	own	cache	for	a	porCon	of	global	memory;	
consistency	of	the	cache	is	maintained	by	hardware	

• Advantages:	
•  User-friendly	programming	techniques	(OpenMP	and	OpenACC)	
•  Low	latency	for	data	sharing	between	tasks	

• Disadvantages:	
•  Global	memory	space-to-CPU	path	may	be	a	boZleneck	
•  Non-Uniform	Memory	Access	
•  Programmer	responsible	for	synchronizaCon	

Distributed Memory (DM)

• AYributes:	
•  Memory	is	shared	amongst	processors	through	message	passing	

• Advantages:	
•  Memory	scales	based	on	the	number	of	processors	
•  Access	to	a	processor's	own	memory	is	fast	
•  Cost	effecCve	

• Disadvantages:	
•  Error	prone;	programmers	are	responsible	for	the	details	of	the	
communicaCon	
•  Complex	data	structures	may	be	difficult	to	distribute	

Hardware/SoWware Models

•  Socware	and	hardware	models	do	not	need	to	match	

• DM	socware	on	SM	hardware:	
•  Message	Passing	Interface	(MPI)	-	designed	for	DM	Hardware	but	available	on	
SM	systems	

•  SM	socware	on	DM	hardware	
•  Remote	Memory	Access	(RMA)	included	within	MPI-3	
•  ParCConed	Global	Address	Space	(PGAS)	languages	

•  Unified	Parallel	C	(extension	to	ISO	C	99)	
•  Coarray	Fortran	(Fortran	2008)	

Difficul)es

•  SerializaCon	causes	boZlenecks	
• Workload	is	not	distributed	
• Debugging	is	hard	
•  Serial	approach	doesn't	parallelize	

Parallel Performance

Defini)ons

•  SerialTime(n)	-	Time	for	a	serial	program	to	solve	a	problem	with	an	input	
of	size	n	
•  ParallelTime(n,p)	-	Time	for	a	parallel	program	to	solve	the	same	problem	
with	an	input	size	of	n	using	p	processors	

•  SerialTime(n)	≤	ParallelTime(n,1)	

•  Speedup(n,p)	=	SerialTime(n)	/	ParallelTime(n,p)	
• Work(n,p)	=	p	*	ParallelTime(n,p)	
•  Efficiency(n,p)	=	SerialTime(n)	/	[p	*	ParallelTime(n,p)]	

Defini)ons

•  ExpectaCons:	
•  0	<	Speedup	≤	p	
•  SerialWork	≤	ParallelWork	<	∞	
•  0	<	Efficiency	≤	1	

•  Linear	Speedup:	Speedup	=	p,	given	some	restricCon	on	the	
relaConship	between	n	and	p	

In The Real World

Superlinear Speedup

•  Superlinear	Speedup:		Speedup	>	p,	thus	Efficiency	>	1	

• Why?	
•  Parallel	computer	has	p	Cmes	as	much	RAM	so	a	higher	fracCon	of	program	
memory	is	in	RAM	instead	of	disk.	
•  Parallel	program	used	a	different	algorithm	which	was	not	possible	with	the	
serial	program.	

Amdahl's Law

Let	f	be	the	fracCon	of	Cme	spent	on	serial	operaCons	
Let	ParallelOps	=	1	–	f	and	assume	linear	speedup	
	
•  For	p	processors:	
•  ParallelTime(p)	≥	SerialTime(p)	*	[f	+	(ParallelOps/p)]	
•  Speedup(p)	≤	1	/	(f	+	ParallelOps/p)	

•  Thus,	Speedup(p)	≤	1/f,	no	maZer	the	number	of	processors	used	

Maximum Possible Performance

Pessimis)c Interpreta)on

Op)mis)c Interpreta)on

• We	should	be	more	opCmisCc	than	Amdahl's	Law	because:	
•  Algorithms	with	much	smaller	values	of	f	
•  More	Cme	spent	in	RAM	than	disk	
•  Time	spent	in	f	is	a	decreasing	fracCon	of	the	total	Cme	as	problem	size	
increases	

Common Program Structure

Scaling Strategy

•  Increase	n	as	p	increases	
•  Amdahl	considered	strong	scaling	where	n	is	fixed	
	

• UClize	weak	scaling	
•  The	amount	of	data	per	processor	is	fixed	
•  Efficiency	can	remain	high	if	communicaCon	does	not	increase	excessively	

Embarrassingly Parallel Jobs

Parameteriza)on

• Requirements	
•  Independent	tasks	
•  Common	applicaCons	
•  One	job	submission	per	task	

•  Techniques	
•  Parameter	sweeps	(modify	parameters	mathemaCcally	for	each	task)	
•  List-driven	analysis	(modify	parameters	based	on	a	list	of	values)	

Example: List-Driven Analysis

• Problem:	Calculate	the	theoreCcal	performance	for	the	CRI	HPC	
clusters	(historically)	
• Rpeak	=	Nodes	*	CoresPerNodes*	ClockSpeed	*	InstructPerCycle	

List

Cluster	 Nodes	 CoresPerNode	 ClockSpeed	 InstructPerCycle	

ibicluster	 99	 8	 2.66e09	 4	

tarbell	 40	 64	 2.20e09	 8	

gardner	 126	 28	 2.00e09	 16	

Base

#PBS	–N	Rpeak.@Cluster	
#PBS	–l	nodes=1:ppn=1	
#PBS	–l	mem=1gb	
#PBS	–l	wallCme=20:00	
	
./rpeak	-n	@Nodes	–c	@CoresPerNode	\		
															–s	@ClockSpeed	-i	@InstructPerCycle		

Shared Memory Parallelism

Shared Memory

• All	processors	can	directly	access	all	the	memory	in	the	system	
(though	access	Cmes	may	be	different	due	to	NUMA)	
•  Socware	portability	–	ApplicaCons	can	be	developed	on	serial	
machines	and	run	on	parallel	machines	without	any	changes	
•  Latency	Hiding	–	Ability	to	mask	the	access	latency	for	memory	
access,	I/O,	and	communicaCons	
•  Scheduling–	Supports	system-level	dynamic	mapping	of	tasks	to	
processors	
•  Ease	of	programming	–	Significantly	easier	to	program	(in	my	opinion)	
using	a	shared	memory	model	over	a	distributed	memory	model	

Paralleliza)on Techniques: pthreads

• POSIX	threads	
•  Standard	threading	implementaCon	for	UNIX-like	operaCng	systems	
(Linux,	Mac	OS	X)	
•  Library	that	can	be	linked	with	C	programs	
•  Some	compilers	include	a	Fortran	version	of	pthreads	
• Knowledge	of	pthreads	can	easily	be	transferred	to	programming	
other	widely	used	threading	specificaCons	(e.g.,	Java	threads)	

Matrix-Vector Mul)plica)on (pthreads)

#include	<stdio.h>	
#include	<stdlib.h>	
#include	<pthread.h>	
	
/*	Global	variable:		accessible	to	all	threads	*/	
int	thread_count;	
	
void*	Pth_mat_vect(void*	rank);					/*	Thread	funcCon	*/	
	
int	main(int	argc,	char*	argv[])	{	
					long	thread;								/*	Use	long	in	case	of	a	64-bit	system	*/	
					pthread_t*	thread_handles;	
	
/*	Get	number	of	threads	from	the	command	line	*/	
thread_count	=	strtol(argv[1],	NULL,	10);	
	
thread_handles	=	malloc(thread_count*sizeof(pthread_t));	
	
	

Matrix-Vector Mul)plica)on (pthreads)

/*	Create	a	thread	for	each	rank	*/	
for	(thread=0;	thread	<	thread_count;	thread++)		
					pthread_create(&thread_handles[thread],	NULL,		
																																		Pth_mat_vect,	(void*)	thread);	
	
/*	Join	the	results	from	each	thread	*/	
for	(thread=0;	thread	<	thread_count;	thread++)	
					pthread_join(thread_handles[thread],	NULL);	
	
free(thread_handles);	
return	0;	
}					/*	main	*/											

Matrix-Vector Mul)plica)on (pthreads)

void*	Pth_mat_vect(void*	rank)	{	
					long	my_rank	=	(long)	rank;	
					int	i,	j;	
					int	local_m	=	m/thread_count;	
					int	my_first_row	=	my_rank	*	local_m;	
					int	my_last_row	=	(my_rank	+	1)	*	local_m	–	1;	
	
					for	(i	=	my_first_row;	i	<=	my_last_row;	i++)	{	
										y[i]	=	0.0;	
										for	(j	=	0;	j	<	n;	j++)		
															y[i]	+=	A[i][j]*x[j];	
					}	
	
					return	NULL;	
}					/*	Pth_mat_vect	*/	
						

Paralleliza)on Techniques: OpenMP

• OpenMP	is	sort	of	an	HPC	standard	for	shared	memory	programming	
• OpenMP	version	4.5	released	in	2015	and	includes	accelerator	
support	as	an	advanced	feature	
• API	for	thread-based	parallelism	
•  Explicit	programming	model,	compiler	interprets	direcCves	
• Based	on	a	combinaCon	of	compiler	direcCves,	library	rouCnes,	and	
environment	variables	
• Uses	the	fork-join	model	of	parallel	execuCon	
• Available	in	most	Fortran	and	C	compilers	

OpenMP Goals

•  StandardizaCon:	standard	among	all	shared	memory	architectures	
and	hardware	pla�orms	
•  Lean:	simple	and	limited	set	of	compiler	direcCves	for	shared	memory	
programming.	Ocen	significant	performance	gains	using	just	4-6	
direcCves	in	complex	applicaCons.	
•  Ease	of	use:	supports	incremental	parallelizaCon	of	a	serial	program,	
not	an	all-or-nothing	approach.	
• Portability:		supports	Fortran,	C,	and	C++	

OpenMP Building Blocks

•  Compiler	DirecCves	(embedded	in	code)	
•  Parallel	regions	(PARALLEL)	
•  Parallel	loops	(PARALLEL	DO)	
•  Parallel	workshare	(PARALLEL	WORKSHARE)	
•  Parallel	secCons	(PARALLEL	SECTIONS)	
•  Parallel	tasks	(PARALLEL	TASK)	
•  Serial	secCons	(SINGLE)	
•  SynchronizaCon	(BARRIER,	CRITICAL,	ATOMIC,	…)	
•  Data	structures	(PRIVATE,	SHARED,	REDUCTION)	

•  Run-Cme	library	rouCnes	(called	in	code)	
•  OMP_SET_NUM_THREADS	
•  OMP_GET_NUM_THREADS	

•  UNIX	Environment	Variables	(set	before	program	execuCon)	
•  OMP_NUM_THREADS	

Fork-Join Model

• Parallel	execuCon	is	achieved	by	generaCng	threads	which	are	
executed	in	parallel	
• Master	thread	executes	in	serial	unCl	the	first	parallel	region	is	
encountered	
•  Fork	–	The	master	thread	created	a	team	of	threads	which	are	
executed	in	parallel	
•  Join	–	When	the	team	members	complete	the	work,	they	synchronize	
and	terminate.	The	master	thread	conCnues	sequenCally.	

	

Fork-Join Model

Work-Sharing Constructs

Barriers

• Barriers	may	be	needed	for	
correctness	
•  SynchronizaCon	degrades	
performance	

OpenMP Nota)on

• OpenMP	recognizes	the	following	compiler	direcCves	that	start	with:	
•  !$OMP																		(in	Fortran)	
•  #pragma	omp						(in	C/C++)	

Parallel Loops

•  Each	thread	executes	part	of	the	loop	
•  The	number	of	iteraCons	is	staCcally	assigned	to	the	threads	upon	
entry	to	the	loop	
• Number	of	iteraCons	cannot	be	changed	during	execuCons	
•  Implicit	BARRIER	at	the	end	of	the	loop	
• High	efficiency	

Parallel Loop Example (Fortran)

!$OMP	PARALLEL	
	
!$OMP	DO	
	
DO	i	=	1,	n	
					a(i)	=	b(i)	+	c(i)	
END	DO	
	
!$OMP	END	DO	
	
!$OMP	END	PARALLEL	

Parallel Sec)ons

• MulCple	independent	secCons	can	be	executed	concurrently	by	
separate	threads	
•  Each	parallel	secCon	is	assigned	to	a	specific	thread	which	executes	
the	work	from	start	to	finish	
•  Implict	BARRIER	at	the	end	of	each	SECTION	
• Nested	parallel	secCons	are	possible,	but	impracCcal	

Parallel Sec)ons Example (Fortran)

!$OMP	PARALLEL	SECTIONS	
	
!$OMP	SECTION	
DO	i	=	1,	n	
					a(i)	=	b(i)	+	c(i)	
END	DO	
	
!$OMP	SECTION	
DO	i	=	1,	k	
					d(i)	=	e(i)	+	f(i)	
END	DO	
	
!$OMP	END	PARALLEL	SECTIONS	

Parallel Tasks and Workshares

• Parallel	Tasks	
•  Unstructured	parallelism	
•  Irregular	problems	like:	

•  Recursive	algorithms	
•  Unbounded	loops	
	

• Parallel	Workshares	
•  Fortran	only	
•  Used	to	parallelize	assignments	

Matrix-Vector Mul)plica)on: OpenMP C

#include	<stdio.h>	
#include	<stdlib.h>	
	
void	Omp_mat_vect(int	m,	int	n,	double	*	restrict	a,	
																																							double	*	restrict	b,	double	*	restrict	c)	{	
					int	i,	j;	
	
#pragma	omp	parallel	for	default	(none)	\	
																		shared(m,	n,	a,	b,	c)	private	(i,	j)	
					for	(i	=	0;	i	<	m;	i++)	{	
										a[i]	=	0.0;	
										for	(j	=	0;	j	<	n;	j++)	
															a[i]	+=	b[i*n+j]	*	c[j];	
					}				/*	End	of	omp	parallel	for	*/	

Matrix-Vector Mul)plica)on: OpenMP
Fortran

subrouCne	Pth_mat_vect(m,	n,	a,	b,	c)	
	
implicit	none	
	
integer(kind=4)	::	m,	n	
real(kind=8)	::	a(1:m),	b(1:m,	1:n),	c(1:n)	
integer	::	i,	j	
	
!$OMP	PARALLEL	DO	DEFAULT(NONE)	&	
!$OMP	SHARED(m,	n,	a,	b,	c)	PRIVATE(i,	j)	
					do	i	=	1,	m	
										a(i)	=	0.0	
										do	j	=	1,	n	
															a(i)	=	a(i)	+	b(i,	j)	*	c(j)	
										end	do	
					end	do	
!$OMP	END	PARALLEL	DO	
	
return	
end	subrouCne	Pth_mat_vect	

OpenMP Errors

• Variable	Scoping:	Which	are	shared	and	which	are	private	
•  SequenCal	I/O	in	a	parallel	region	can	lead	to	an	unpredictable	order	
•  False	sharing:	two	or	more	processors	access	different	variables	in	
the	same	cache	line	(Performance)	
• Race	CondiCons	
• Deadlock	

Summa)on Example

What	is	with	the	following	code	wrong?	
	
sum	=	0.0	
!$OMP	PARALLEL	DO		
	
DO	i	=	1,	n	
					sum	=	sum	+	a(i)	
END	DO	
	
!$	OMP	END	PARALLEL	DO	

Summa)on Example Correc)on

sum	=	0.0	
!$OMP	PARALLEL	DO	REDUCTION(+,sum)	
	
DO	i	=	1,	n	
					sum	=	sum	+	a(i)	
END	DO	
	
!$	OMP	END	PARALLEL	DO	
	

Distributed Memory Parallelism

Message Passing

• CommunicaCon	on	distributed	memory	systems	are	a	significant	
aspect	of	performance	and	correctness	
• Messages	are	relaCvely	slow,	with	startup	Cmes	(latency)	taking	
thousands	of	cycles	
• Once	message	passing	has	started,	the	addiConal	Cme	per	byte	
(bandwidth)	is	relaCvely	small	

Performance on Gardner

•  Intel	Xeon	E5-2683	Processor	(Haswell)	
• Processor	speed:	2,000	cycles	per	microsecond	(µsec)	
•  16	FLOPs/cycle:		32,000	FLOPs	per	µsec	
• MPI	message	latency	=	~2.5	µsec	or	80,000	FLOPs	
• MPI	message	bandwidth	=	~7,000	bytes/µsec	=	4.57	FLOPs/byte	

Reducing Latency

• Reduce	the	number	of	messages	by	mapping	communicaCng	enCCes	
onto	the	same	processor	
• Combine	messages	having	the	same	sender	and	desCnaCon	
•  If	processor	A	has	data	needed	by	processor	B,	have	A	send	it	to	B,	
rather	than	waiCng	for	B	to	request	it.	Processor	A	should	send	as	
soon	as	the	data	is	ready,	processor	B	should	read	it	as	late	as	
possible	to	increase	the	probability	that	the	data	has	arrived	

Other Issues With Message Passing

• Network	CongesCon	
• Deadlock	
•  Blocking:	a	processor	cannot	proceed	unCl	the	message	is	finished	
• With	blocking	communicaCon,	you	may	reach	a	point	where	no	processor	can	
proceed	
•  Non-blocking	communicaCon:	easiest	way	to	prevent	deadlock;	processors	
can	send	and	proceed	before	receive	is	finished	

Message Passing Interface (MPI)

•  InternaConal	Standard	
• MPI	1.0	released	in	1994	
• Current	version	is	3.1	(June	2015)	
• MPI	4.0	standard	in	the	works	
• Available	on	all	parallel	systems	
•  Interfaces	in	C/C++	and	Fortran	
• Bindings	for	MATLAB,	Python,	R,	and	Java	
• Works	on	both	distributed	memory	and	shared	memory	hardware	
• Hundreds	of	funcCons,	but	you	will	need	~6-10	to	get	started	

MPI Basics

•  Two	common	MPI	funcCons:	
•  MPI_SEND()	-	to	send	a	message	
•  MPI_RECV()	-	to	receive	a	message	

•  FuncCon	like	write	and	read	statements	
• Both	are	blocking	operaCons	
• However,	a	system	buffer	is	used	that	allows	small	messages	to	be	
non-blocking,	but	large	messages	will	be	blocking	
•  The	system	buffer	is	based	on	the	MPI	implementaCon,	not	the	
standard	
• Blocking	communicaCon	may	lead	to	deadlocks	

Small Messages

Large Messages

Deadlocks

Source	 Avoidance	

Non-Blocking Communica)on

• Non-Blocking	operaCons	
•  MPI_ISEND()	
•  MPI_IRECV()	
•  MPI_WAIT()	

•  The	user	can	check	for	data	at	a	later	stage	in	the	program	without	
waiCng	
•  MPI_TEST()	

• Non-blocking	operaCons	will	perform	beZer	than	blocking	operaCons	
• Possible	to	overlap	communicaCon	with	computaCon	

MPI Program Template

#include	"mpi.h"	
	
/*	IniCalize	MPI	*/	
MPI_Init(&argc,	&argv);	
	
/*	Allow	each	processor	to	determine	its	role	*/	
int	num_processor,	my_rank;	
MPI_Comm_size(MPI_COMM_WORLD,	&num_processor);	
MPI_Comm_rank(MPI_COMM_WORLD,	&my_rank);	
	
/*	Send	and	receive	some	stuff	here	*/	
	
	
/*	Finalize	*/	
MPI_Finalize()	

MPI Summa)on

MPI Summa)on

/*	Send	and	receive	some	stuff	here	*/	
if	(my_rank	==	0)	{	
					sum	=	0.0;	
					for	(source=1;	source	<	num_procs;	source++)	{	
											MPI_RECV(&value,	1,	MPI_FLOAT,	source,	tag,		
																															MPI_COMM_WORLD,	&status);	
											sum	+=	value;	
					}	
}	
else	{	
					MPI_SEND(&value,	1,	MPI_FLOAT,	0,	tag,	MPI_COMM_WORLD);	
}	
	

A More Efficient Receive

•  In	the	previous	example,	rank	0	received	the	messages	in	order	based	
on	ranks.	
•  Thus,	if	processor	2	was	delayed,	then	processor	0	was	also	delayed	
• Make	the	following	modificaCon:	
	
MPI_RECV(&value,	1,	MPI_FLOAT,	MPI_ANY_SOURCE,	tag,		
																				MPI_COMM_WORLD,	&status);	
	
• Now	processor	0	can	process	messages	as	soon	as	they	arrive	
	

MPI Reduc)on

•  Like	OpenMP,	MPI	also	has	reducCon	operaCons	that	can	be	used	for	
tasks	such	as	summaCon	
• ReducCon	is	a	type	of	collecCve	communicaCon	

MPI_REDUCE(&value,	&sum,	1,	MPI_FLOAT,	MPI_SUM,		
																										0,	MPI_COMM_WORLD);	
	
• ReducCon	operaCons:	
•  MPI_SUM,	MPI_MIN,	MPI_MAX,	MPI_PROD	
•  MPI_LAND,	MPI_LOR	

Collec)ve Communica)on

• Most	frequently	invoked	MPI	rouCnes	acer	send	and	receive	
•  Improve	clarity,	run	faster	than	send	and	receive,	and	reduce	the	
likelihood	of	making	an	error	
•  Examples	
•  Broadcast	(MPI_Bcast)	
•  ScaZer	(MPI_ScaZer)	
•  Gather	(MPI_Gather)	
•  All	Gather	(MPI_Allgather)	
	

Broadcast

Sca`er

Gather

All Gather

MPI Data Types

• PrimiCve	data	types	(correspond	to	those	found	in	the	underlying	
language)	
•  Fortran	

•  MPI_CHARACTER	
•  MPI_INTEGER	
•  MPI_REAL,	MPI_DOUBLE_PRECISION	
•  MPI_LOGICAL	

•  C/C++	(include	many	more	variants	than	Fortran)	
•  MPI_CHAR	
•  MPI_INT,	MPI_UNSIGNED,	MPI_LONG	
•  MPI_FLOAT,	MPI_DOUBLE	
•  MPI_C_BOOL	

MPI Data Types

• Derived	data	types	are	also	possible	
•  Vector	–	data	separated	by	a	constant	stride	
•  ConCguous	–	data	separated	by	a	stride	of	1	
•  Struct	–	mixed	types	
•  Indexed	–	array	of	indices	

MPI Vector

MPI Con)guous

MPI Struct

MPI Indexed

MPI Synchroniza)on

•  Implicit	synchronizaCon	
•  Blocking	communicaCon	
•  CollecCve	communicaCon	

•  Explicit	synchronizaCon	
•  MPI_Wait	
•  MPI_Waitany	
•  MPI_Barrier	

• Remember,	synchronizaCon	can	hinder	performance	

Addi)onal MPI Features

• Virtual	topologies	
• User-created	communicators	
• User-specified	derived	data	types	
• Parallel	I/O	
• One-sided	communicaCon	(MPI_Put,	MPI_Get)	
• Non-blocking	collecCve	communicaCon	
• Remote	Memory	Access	

Vectoriza)on

Accelerators

• Principle:	Split	an	operaCon	into	independent	parts	and	execute	the	
parts	concurrently	in	an	accelerator	(SIMD)	

	
DO	I	=	1,	1000	
					A(I)	=	B(I)	+	C(I)	
END	DO	
	
• Accelerators	like	Graphics	Processing	Units	are	specialized	for	SIMD	
operaCons	

Popularity

•  In	2012,	13%	of	the	performance	share	of	the	Top	500	
Supercomputers	was	provided	through	accelerators	
•  Today,	the	performance	share	for	accelerators	is	~38%	
•  Trend:	Build	diverse	compuCng	pla�orms	with	mulCprocessors,	SMP	
nodes,	and	accelerators	
• Caveat:	Difficult	to	use	heterogenous	hardware	effecCvely	

Modern Accelerators

NVidia	Volta	
•  7.5	TFLOPs	double	precision	
•  30	TFLOPs	half	precision	
•  5120	cores	
•  16	GB	RAM	
•  900	GB/s	memory	bandwidth	

Intel	Xeon	Phi	Knight's	Landing	
•  3	TFLOPs	double	precision	
•  72	cores	(288	threads)	
•  16	GB	RAM	
•  384	GB/s	memory	bandwidth	
•  Includes	both	a	scalar	and	a	
vector	unit	

NVidia Architecture

•  SIMT:	Single	InstrucCon,	
MulCple	Thread	(Similar	to	
SIMD)	
•  Thread	blocks	are	executed	by	a	
warp	of	32	cores	
• Performance	is	dependent	on	
memory	alignment	and	
eliminaCng	shared	memory	
access	

Programming GPUs

•  Low-Level	Programming	
•  Proprietary	–	NVidia's	CUDA	
•  Portable	–	OpenCL	

• High-Level	Programming	
•  OpenACC	
•  OpenMP	4.5	
•  Allows	for	a	single	code	base	that	may	be	compiled	on	both	mulCcore	and	
GPUs	

CUDA Matrix Mul)plica)on
	int	main(void)	{	
					int	*a,	*b,	*c;																																			//	CPU	copies	
					int	*dev_a,	*dev_b,	*dev_c;								//	GPU	copies	
	
					/*	Allocate	memory	on	GPU	*/	
					arraysize	=	n*sizeof(int);	
					cudaMalloc((void**)\&dev_a,	arraysize);	
					cudaMalloc((void**)\&dev_b,	arraysize);	
					cudaMalloc((void**)\&dev_c,	sizeof(in));	
	
					use	malloc	for	a,	b,	c	
					iniCalize	a,	b	
	
					/*	Move	a	and	b	to	the	GPU	*/	
				cudaMemcpy(dev_a,	a,	arraysize,	cudaMemcpyHostToDevice);	
				cudaMemcpy(dev_b,	b,	arraysize,	cudaMemcpyHosZoDevice);	
	
					/*	Launch	GPU	kernel	*/	
					dot	<<<	n/threads_per_block,threads_per_block	>>>(dev_a,dev_b,dev_c);	
	
					/*		Copy	results	back	to	CPU	
					cudaMemcpy(c,	dev_c,	sizeof(int),	cudaMemcpyDeviceToHost)	
	
					return	0;	
}	
	
	
	
	
	

CUDA Matrix Mul)plica)on

global	void	dot(int	*a,	int	*b,	int	*c)	{	
					shared	int	temp[threads_per_block];	
					int	index	=	threadIdx.x	+	blockIdx.x	+	blockDim.x;	
	
					/*	Convert	warp	index	to	global	*/	
					temp[threadIdx.x]	=	a[index]	*	b[index];	
	
					/*	Avoid	race	condiCon	on	sum	within	block	*/	
					_syncthreads();	
	
					if	(threadIdx.x	==	0)	{	
										int	sum	=	0;	
										for	(int	i	=	0;	i	<	threads_per_block;	i++)	
															sum	+=	temp[i];	
	
										/*	add	to	global	sum	*/	
										atomicAdd(c,	sum)	
					}	
}	
	
	

OpenACC and OpenMP

•  Share	the	same	model	of	computaCon	
• Host-centric	–	host	device	offloads	code	regions	and	data	to	
accelerators	
• Device	–	has	independent	memory	and	mulCple	threads	
• Mapping	clause	–	Defines	the	relaConship	between	memory	on	the	
host	device	and	memory	on	the	accelerator	

OpenACC Matrix Mul)plica)on

int	main(int	argc,	char**	argv)	{	
					int	n	=	atoi(argv[1]);	
					float	*a	=	(float	*)malloc(sizeof(float)	*	n	*	n);	
					float	*b	=	(float	*)malloc(sizeof(float)	*	n	*	n);	
					float	*c	=	(float	*)malloc(sizeof(float)	*	n	*	n);	
	
					#pragma	acc	data	copyin(a[0:n*n],	b[0:n*n]),	copy(c[0:n*n])	{	
										int	i,	j,	k;	
	
										#pragma	acc	kernels	
										for	(i	=	0;	i	<	n;	i++)	{	
															for	(j	=	0;	j	<	n;	j++)	{	
																				a[i*n+j]	=	(float)	i	+	j;	
																				b[i*n+j]	=	(float)	i	–	j;	
																			c[i*n+j]	=	0.0;	
															}	
										}	
							
																				
	
	
	

OpenACC Matrix Mul)plica)on

										#pragma	acc	kernels	
										for	(i	=	0;	i	<	n;	i++)	{	
															for	(j	=	0;	j	<	n;	j++)	{	
																				for	(k	=	0;	k	<	n;	k++)	{	
																									c[i	*	n	+	j]	+=	a[i	*	n	+	k]	*	b[k	*	n	+	j];	
																				}	
															}	
										}	
					}	
}	

Speedup?

•  Some	problems	can	achieve	a	speedup	of	10x-100x	by	offloading	
some	of	the	work	to	a	GPU	(e.g.	linpack,	matrix	mulCplicaCon)	
•  In	reality:	
•  Only	a	small	fracCon	of	applicaCons	can	uClize	a	GPU	effecCvely	
•  The	average	speedup	of	those	applicaCons	is	~2x-4x	
•  OpCmizing	your	code	using	mulCcore	technologies	is	probably	a	beZer	use	of	
your	Cme	

Problem Areas

• Branching	can	cut	your	performance	by	50%	since	instrucCons	need	
to	be	issued	for	both	branches	
• Memory	bandwidth	on	GPUs	is	poor	
•  Need	to	make	sure	your	operands	are	used	more	than	once	
•  For	the	NVidia	Volta,	all	operands	need	to	be	used	67x	to	achieve	peak	FLOPs	

Accelerator Trends

•  Intel	has	canceled	Knight's	Landing	and	Knight's	Hill;	future	Xeon	Phi	status	
is	unknown	
•  GPUs	are	becoming	less	rigidly	SIMD	and	including	beZer	memory	
bandwidth	
• More	programmers	moving	from	low-level	programming	like	CUDA	to	
high-level	direcCves	
•  PGI	Compiler	was	purchased	by	NVidia	in	2013;	cut	support	for	OpenCL	
•  OpenACC	and	OpenMP	sCll	have	not	merged	
•  Efficiency	of	GPUs	is	sCll	problemaCc	and	the	programming	model	is	a	
moving	target	
•  New	MoCvaCon:		Deep	Learning	

Hybrid Compu)ng

Current Trend

• Accelerator-based	machines	are	grabbing	the	high	rankings	on	the	
Top	500,	but	clusters	with	standard	cores	are	sCll	most	important	
economically	
•  Economics	dictates	distributed	memory	system	of	shared	memory	
boards	with	mulCcore	commodity	chips,	perhaps	with	some	form	of	
accelerator	distributed	sparingly	

MPI+X

Conclusion

Topics for Possible Future Workshops

•  ScienCfic	CompuCng	(C++	or	Fortran	or	Both)	
•  Parallel	CompuCng	Theory	(e.g.,	Load	balancing,	measuring	performance)	
•  Embarrassingly	Parallel		
•  pthreads	
•  OpenMP	
• MPI	
•  OpenACC	
•  CUDA	
•  Parallel	Debugging/Profiling	

